在并行稀疏矩阵计算中,需要一定的共享内存

A. George, E. Ng
{"title":"在并行稀疏矩阵计算中,需要一定的共享内存","authors":"A. George, E. Ng","doi":"10.1145/47917.47919","DOIUrl":null,"url":null,"abstract":"Over the past few years a number of algorithms for solving large sparse systems of equations on distributed-memory multiprocessors have been developed. In this article the authors point out that the properties of sparse matrix problems generally, along with the characteristics of these parallel algorithms for solving them, lead to inefficient use of memory. An example is presented to show that a (relatively small) amount of shared memory on an otherwise pure distributed-memory multiprocessor is very desirable when it is being used to execute these parallel algorithms.","PeriodicalId":177516,"journal":{"name":"ACM Signum Newsletter","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Some shared memory is desirable in parallel sparse matrix computation\",\"authors\":\"A. George, E. Ng\",\"doi\":\"10.1145/47917.47919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past few years a number of algorithms for solving large sparse systems of equations on distributed-memory multiprocessors have been developed. In this article the authors point out that the properties of sparse matrix problems generally, along with the characteristics of these parallel algorithms for solving them, lead to inefficient use of memory. An example is presented to show that a (relatively small) amount of shared memory on an otherwise pure distributed-memory multiprocessor is very desirable when it is being used to execute these parallel algorithms.\",\"PeriodicalId\":177516,\"journal\":{\"name\":\"ACM Signum Newsletter\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Signum Newsletter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/47917.47919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Signum Newsletter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/47917.47919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在过去的几年中,已经开发了许多在分布式存储多处理器上求解大型稀疏方程组的算法。在本文中,作者指出,稀疏矩阵问题的一般性质,以及这些并行算法解决稀疏矩阵问题的特点,导致内存使用效率低下。本文给出了一个示例,说明在纯分布式内存多处理器上使用(相对较小的)共享内存来执行这些并行算法是非常理想的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Some shared memory is desirable in parallel sparse matrix computation
Over the past few years a number of algorithms for solving large sparse systems of equations on distributed-memory multiprocessors have been developed. In this article the authors point out that the properties of sparse matrix problems generally, along with the characteristics of these parallel algorithms for solving them, lead to inefficient use of memory. An example is presented to show that a (relatively small) amount of shared memory on an otherwise pure distributed-memory multiprocessor is very desirable when it is being used to execute these parallel algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Konrad Zuse: reflections on the 80th birthday of the German computing pioneer A comparison of methods for accelerating convergence of Newton's method for multiple polynomial roots Restructuring the BLAS level 1 routine for computing the modified givens transformation Analytic derivation of comparisons in binary search An interactive program to approximate double integrals: an easy to use interface for Cubpack++
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1