可扩展的softmax损失面部验证

Kun Zhang, Dongping Zhang, Changxing Jing, Jianchao Li, Li Yang
{"title":"可扩展的softmax损失面部验证","authors":"Kun Zhang, Dongping Zhang, Changxing Jing, Jianchao Li, Li Yang","doi":"10.1109/ICSAI.2017.8248342","DOIUrl":null,"url":null,"abstract":"Thanks to the recent development of deep convolutional neural networks, the performance of face verification has increased significantly. The softmax loss function is used mostly to make CNN models trained well. In order to get more robust face feature by deep CNN model, this paper proposes a new supervision signal based on the regular softmax loss function, namely scalable softmax loss, for face verification task. The scalable softmax loss function adjust the contribution to final loss for different training samples by a learned parameter. And, it's important to note that our proposed scalable softmax loss function can be easily implemented using existing deep learning frameworks. Extensive analysis and experiments on Labeled Face in the Wild(LFW) and YouTube Faces(YTF) show the superiority of the scalable softmax loss function in face verification task. Specially, our proposed scalable achieves comparable results on challenging LFW data set and YTF data set with the accuracy 99% and 95.08% respectively. Codes are released at1.","PeriodicalId":285726,"journal":{"name":"2017 4th International Conference on Systems and Informatics (ICSAI)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Scalable softmax loss for face verification\",\"authors\":\"Kun Zhang, Dongping Zhang, Changxing Jing, Jianchao Li, Li Yang\",\"doi\":\"10.1109/ICSAI.2017.8248342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thanks to the recent development of deep convolutional neural networks, the performance of face verification has increased significantly. The softmax loss function is used mostly to make CNN models trained well. In order to get more robust face feature by deep CNN model, this paper proposes a new supervision signal based on the regular softmax loss function, namely scalable softmax loss, for face verification task. The scalable softmax loss function adjust the contribution to final loss for different training samples by a learned parameter. And, it's important to note that our proposed scalable softmax loss function can be easily implemented using existing deep learning frameworks. Extensive analysis and experiments on Labeled Face in the Wild(LFW) and YouTube Faces(YTF) show the superiority of the scalable softmax loss function in face verification task. Specially, our proposed scalable achieves comparable results on challenging LFW data set and YTF data set with the accuracy 99% and 95.08% respectively. Codes are released at1.\",\"PeriodicalId\":285726,\"journal\":{\"name\":\"2017 4th International Conference on Systems and Informatics (ICSAI)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 4th International Conference on Systems and Informatics (ICSAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI.2017.8248342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th International Conference on Systems and Informatics (ICSAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2017.8248342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于近年来深度卷积神经网络的发展,人脸验证的性能有了很大的提高。softmax损失函数主要用于训练CNN模型。为了通过深度CNN模型获得更鲁棒的人脸特征,本文提出了一种新的基于正则softmax损失函数的监督信号,即可扩展的softmax损失,用于人脸验证任务。可扩展的softmax损失函数通过学习参数来调整不同训练样本对最终损失的贡献。值得注意的是,我们提出的可扩展softmax损失函数可以使用现有的深度学习框架轻松实现。大量的野外标签脸(LFW)和YouTube脸(YTF)的分析和实验表明了可扩展softmax损失函数在人脸验证任务中的优越性。特别地,我们提出的可扩展性在具有挑战性的LFW数据集和YTF数据集上取得了相当的结果,准确率分别为99%和95.08%。代码在1发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable softmax loss for face verification
Thanks to the recent development of deep convolutional neural networks, the performance of face verification has increased significantly. The softmax loss function is used mostly to make CNN models trained well. In order to get more robust face feature by deep CNN model, this paper proposes a new supervision signal based on the regular softmax loss function, namely scalable softmax loss, for face verification task. The scalable softmax loss function adjust the contribution to final loss for different training samples by a learned parameter. And, it's important to note that our proposed scalable softmax loss function can be easily implemented using existing deep learning frameworks. Extensive analysis and experiments on Labeled Face in the Wild(LFW) and YouTube Faces(YTF) show the superiority of the scalable softmax loss function in face verification task. Specially, our proposed scalable achieves comparable results on challenging LFW data set and YTF data set with the accuracy 99% and 95.08% respectively. Codes are released at1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive coverage control with Guaranteed Power Voronoi Diagrams Gray relativity analysis used to track association in passive sonar system Music visualization based on the MIDI specifications for multidimensional polyphonic expression Modeling of a data modification cyber-attack in an IEC 61850 scenario using stochastic colored Petri Nets Four nonlinear multi-input multi-output ADHDP constructions and algorithms based on topology principle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1