学习感知不确定性的神经编码

M. Salmasi, M. Sahani
{"title":"学习感知不确定性的神经编码","authors":"M. Salmasi, M. Sahani","doi":"10.1109/ISIT50566.2022.9834606","DOIUrl":null,"url":null,"abstract":"Perception is an inferential process, in which the state of the immediate environment must be estimated from sensory input. Inference in the face of noise and ambiguity requires reasoning with uncertainty, and much animal behaviour appears close to Bayes optimal. This observation has inspired hypotheses for how the activity of neurons in the brain might represent the distributional beliefs necessary to implement explicit Bayesian computation. While previous work has focused on the sufficiency of these hypothesised codes for computation, relatively little consideration has been given to optimality in the representation itself. Here, we adopt an encoder-decoder approach to study representational optimisation within one hypothesised belief encoding framework: the distributed distributional code (DDC). We consider a setting in which typical belief distribution functions take the form of a sparse combination of an underlying set of basis functions, and the corresponding DDC signals are corrupted by neural variability. We estimate the conditional entropy over beliefs induced by these DDC signals using an appropriate decoder. Like other hypothesised frameworks, a DDC representation of a belief depends on a set of fixed encoding functions that are usually set arbitrarily. Our approach allows us to seek the encoding functions that minimise the decoder conditional entropy and thus optimise representational accuracy in an information theoretic sense. We apply the approach to show how optimal encoding properties may adapt to represent beliefs in new environments, relating the results to experimentally reported neural responses.","PeriodicalId":348168,"journal":{"name":"2022 IEEE International Symposium on Information Theory (ISIT)","volume":"301 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning neural codes for perceptual uncertainty\",\"authors\":\"M. Salmasi, M. Sahani\",\"doi\":\"10.1109/ISIT50566.2022.9834606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perception is an inferential process, in which the state of the immediate environment must be estimated from sensory input. Inference in the face of noise and ambiguity requires reasoning with uncertainty, and much animal behaviour appears close to Bayes optimal. This observation has inspired hypotheses for how the activity of neurons in the brain might represent the distributional beliefs necessary to implement explicit Bayesian computation. While previous work has focused on the sufficiency of these hypothesised codes for computation, relatively little consideration has been given to optimality in the representation itself. Here, we adopt an encoder-decoder approach to study representational optimisation within one hypothesised belief encoding framework: the distributed distributional code (DDC). We consider a setting in which typical belief distribution functions take the form of a sparse combination of an underlying set of basis functions, and the corresponding DDC signals are corrupted by neural variability. We estimate the conditional entropy over beliefs induced by these DDC signals using an appropriate decoder. Like other hypothesised frameworks, a DDC representation of a belief depends on a set of fixed encoding functions that are usually set arbitrarily. Our approach allows us to seek the encoding functions that minimise the decoder conditional entropy and thus optimise representational accuracy in an information theoretic sense. We apply the approach to show how optimal encoding properties may adapt to represent beliefs in new environments, relating the results to experimentally reported neural responses.\",\"PeriodicalId\":348168,\"journal\":{\"name\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"301 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT50566.2022.9834606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT50566.2022.9834606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

感知是一个推理过程,在这个过程中,必须通过感官输入来估计周围环境的状态。面对噪音和模糊性的推理需要不确定性推理,而许多动物行为似乎接近贝叶斯最优。这一观察启发了一些假设,即大脑中神经元的活动如何代表实现显式贝叶斯计算所必需的分布信念。虽然以前的工作主要集中在这些假设代码的充分性上,但相对较少考虑到表示本身的最优性。在这里,我们采用编码器-解码器方法来研究一个假设的信念编码框架中的表征优化:分布式分布代码(DDC)。我们考虑了一种典型的信念分布函数采用底层基函数集的稀疏组合形式的设置,并且相应的DDC信号被神经变异性破坏。我们使用合适的解码器估计由这些DDC信号引起的信念的条件熵。与其他假设框架一样,信念的DDC表示依赖于一组固定的编码函数,这些函数通常是任意设置的。我们的方法允许我们寻找编码函数,使解码器条件熵最小化,从而在信息理论意义上优化表征精度。我们应用该方法来展示最佳编码特性如何适应新环境中的信念,并将结果与实验报告的神经反应联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning neural codes for perceptual uncertainty
Perception is an inferential process, in which the state of the immediate environment must be estimated from sensory input. Inference in the face of noise and ambiguity requires reasoning with uncertainty, and much animal behaviour appears close to Bayes optimal. This observation has inspired hypotheses for how the activity of neurons in the brain might represent the distributional beliefs necessary to implement explicit Bayesian computation. While previous work has focused on the sufficiency of these hypothesised codes for computation, relatively little consideration has been given to optimality in the representation itself. Here, we adopt an encoder-decoder approach to study representational optimisation within one hypothesised belief encoding framework: the distributed distributional code (DDC). We consider a setting in which typical belief distribution functions take the form of a sparse combination of an underlying set of basis functions, and the corresponding DDC signals are corrupted by neural variability. We estimate the conditional entropy over beliefs induced by these DDC signals using an appropriate decoder. Like other hypothesised frameworks, a DDC representation of a belief depends on a set of fixed encoding functions that are usually set arbitrarily. Our approach allows us to seek the encoding functions that minimise the decoder conditional entropy and thus optimise representational accuracy in an information theoretic sense. We apply the approach to show how optimal encoding properties may adapt to represent beliefs in new environments, relating the results to experimentally reported neural responses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Low Rank column-wise Compressive Sensing Ternary Message Passing Decoding of RS-SPC Product Codes Understanding Deep Neural Networks Using Sliced Mutual Information Rate-Optimal Streaming Codes Over the Three-Node Decode-And-Forward Relay Network Unlimited Sampling via Generalized Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1