二元空间学习的非负矩阵分解

Meng Zhang, Xiangguang Dai, Xiangqin Dai, Nian Zhang
{"title":"二元空间学习的非负矩阵分解","authors":"Meng Zhang, Xiangguang Dai, Xiangqin Dai, Nian Zhang","doi":"10.1109/ICACI52617.2021.9435889","DOIUrl":null,"url":null,"abstract":"Non-Negative matrix factorization (NMF) is a popular research problem in data dimensional reduction. Conventional NMF approaches cannot achieve a subspace made up of binary codes from the high-dimensional data space. To address the above-mentioned problem, we propose a method based on nonnegative matrix factorization to generate a low-dimensional subspace made up of binary codes from the high-dimensional data. The problem can be mathematically expressed as a 0-1 integer mixed optimization problem. For this purpose, We put forward a method based on discrete cyclic coordination descent to obtain a local optimal solution. Experiments show that our means can obtain the better clustering ability than conventional non-negative matrix factorization and its variant approaches.","PeriodicalId":382483,"journal":{"name":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-negative Matrix Factorization for Binary Space Learning\",\"authors\":\"Meng Zhang, Xiangguang Dai, Xiangqin Dai, Nian Zhang\",\"doi\":\"10.1109/ICACI52617.2021.9435889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-Negative matrix factorization (NMF) is a popular research problem in data dimensional reduction. Conventional NMF approaches cannot achieve a subspace made up of binary codes from the high-dimensional data space. To address the above-mentioned problem, we propose a method based on nonnegative matrix factorization to generate a low-dimensional subspace made up of binary codes from the high-dimensional data. The problem can be mathematically expressed as a 0-1 integer mixed optimization problem. For this purpose, We put forward a method based on discrete cyclic coordination descent to obtain a local optimal solution. Experiments show that our means can obtain the better clustering ability than conventional non-negative matrix factorization and its variant approaches.\",\"PeriodicalId\":382483,\"journal\":{\"name\":\"2021 13th International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI52617.2021.9435889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI52617.2021.9435889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

非负矩阵分解(NMF)是数据降维中的一个热门研究问题。传统的NMF方法无法从高维数据空间中获得由二进制码组成的子空间。为了解决上述问题,我们提出了一种基于非负矩阵分解的方法,从高维数据生成由二进制码组成的低维子空间。该问题可在数学上表示为0-1整数混合优化问题。为此,我们提出了一种基于离散循环协调下降的局部最优解求解方法。实验表明,该方法比传统的非负矩阵分解及其变体方法具有更好的聚类能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-negative Matrix Factorization for Binary Space Learning
Non-Negative matrix factorization (NMF) is a popular research problem in data dimensional reduction. Conventional NMF approaches cannot achieve a subspace made up of binary codes from the high-dimensional data space. To address the above-mentioned problem, we propose a method based on nonnegative matrix factorization to generate a low-dimensional subspace made up of binary codes from the high-dimensional data. The problem can be mathematically expressed as a 0-1 integer mixed optimization problem. For this purpose, We put forward a method based on discrete cyclic coordination descent to obtain a local optimal solution. Experiments show that our means can obtain the better clustering ability than conventional non-negative matrix factorization and its variant approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual saliency detection based on visual center shift MMTrans-MT: A Framework for Multimodal Emotion Recognition Using Multitask Learning K-means Clustering Based on Improved Quantum Particle Swarm Optimization Algorithm Performance of different Electric vehicle Battery packs at low temperature and Analysis of Intelligent SOC experiment Service Quality Loss-aware Privacy Protection Mechanism in Edge-Cloud IoTs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1