Charence Wong, Zhiqiang Zhang, S. McKeague, Guang-Zhong Yang
{"title":"基于多人视觉的无标记人体动作捕捉头部检测器","authors":"Charence Wong, Zhiqiang Zhang, S. McKeague, Guang-Zhong Yang","doi":"10.1109/BSN.2013.6575503","DOIUrl":null,"url":null,"abstract":"Pervasive human motion capture in the workplace facilitates detailed analysis of the actions of individual subjects and team interaction. It is also important for ergonomic studies for assessing instrument design and workflow analysis. However, a busy, dynamic, team-based environment, such as the operating theatre poses a number of challenges for the currently used marker-based and sensor-based motion capture systems. Occlusions and sensor drift can affect the accuracy of the estimated motion. In this paper, we present a motion capture system that uses a vision-based head detection algorithm and a markerless inertial motion capture for estimating the motion of multiple people. The pose estimation obtained through inertial sensors is combined with location obtained through vision-based tracking to reconstruct the motion of each subject. A multi-target Kalman filter is used to track the movement of each subject. To handle the close proximity of the subjects, visual features associated with the body are used for data association. Experimental results demonstrate the accuracy of the proposed system.","PeriodicalId":138242,"journal":{"name":"2013 IEEE International Conference on Body Sensor Networks","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multi-person vision-based head detector for markerless human motion capture\",\"authors\":\"Charence Wong, Zhiqiang Zhang, S. McKeague, Guang-Zhong Yang\",\"doi\":\"10.1109/BSN.2013.6575503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pervasive human motion capture in the workplace facilitates detailed analysis of the actions of individual subjects and team interaction. It is also important for ergonomic studies for assessing instrument design and workflow analysis. However, a busy, dynamic, team-based environment, such as the operating theatre poses a number of challenges for the currently used marker-based and sensor-based motion capture systems. Occlusions and sensor drift can affect the accuracy of the estimated motion. In this paper, we present a motion capture system that uses a vision-based head detection algorithm and a markerless inertial motion capture for estimating the motion of multiple people. The pose estimation obtained through inertial sensors is combined with location obtained through vision-based tracking to reconstruct the motion of each subject. A multi-target Kalman filter is used to track the movement of each subject. To handle the close proximity of the subjects, visual features associated with the body are used for data association. Experimental results demonstrate the accuracy of the proposed system.\",\"PeriodicalId\":138242,\"journal\":{\"name\":\"2013 IEEE International Conference on Body Sensor Networks\",\"volume\":\"233 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Body Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2013.6575503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2013.6575503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-person vision-based head detector for markerless human motion capture
Pervasive human motion capture in the workplace facilitates detailed analysis of the actions of individual subjects and team interaction. It is also important for ergonomic studies for assessing instrument design and workflow analysis. However, a busy, dynamic, team-based environment, such as the operating theatre poses a number of challenges for the currently used marker-based and sensor-based motion capture systems. Occlusions and sensor drift can affect the accuracy of the estimated motion. In this paper, we present a motion capture system that uses a vision-based head detection algorithm and a markerless inertial motion capture for estimating the motion of multiple people. The pose estimation obtained through inertial sensors is combined with location obtained through vision-based tracking to reconstruct the motion of each subject. A multi-target Kalman filter is used to track the movement of each subject. To handle the close proximity of the subjects, visual features associated with the body are used for data association. Experimental results demonstrate the accuracy of the proposed system.