{"title":"基于物联网的雾计算系统中降低任务延迟的动态任务卸载方法","authors":"Hoa Tran-Dang, Dong-Seong Kim","doi":"10.1109/indin51773.2022.9976147","DOIUrl":null,"url":null,"abstract":"Fog computing systems (FCS) have been widely integrated in the IoT-based applications aiming to improve the quality of services (QoS) such as low response service delay by performing the task computation nearby the task generation sources (i.e., IoT devices) on behalf of remote cloud servers. However, to achieve the objective of delay reduction remains challenging for offloading strategies due to the resource limitation of fog devices. In addition, a high rate of task requests combined with heavy tasks (i.e., large task size) may cause a high imbalance of workload distribution among the heterogeneous fog devices. To cope with the situation, this paper proposes a dynamic task offloading (DTO) approach, which is based on the resource states of fog devices to derive the task offloading policy dynamically. Accordingly, a task can be executed by either a single fog or multiple fog devices through parallel computation of subtasks to reduce the task execution delay. Through the extensive simulation analysis, the proposed approaches show potential advantages in reducing the average delay significantly in the systems with high rate of service requests and heterogeneous fog environment compared with the existing solutions.","PeriodicalId":359190,"journal":{"name":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Task Offloading Approach for Task Delay Reduction in the IoT-enabled Fog Computing Systems\",\"authors\":\"Hoa Tran-Dang, Dong-Seong Kim\",\"doi\":\"10.1109/indin51773.2022.9976147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fog computing systems (FCS) have been widely integrated in the IoT-based applications aiming to improve the quality of services (QoS) such as low response service delay by performing the task computation nearby the task generation sources (i.e., IoT devices) on behalf of remote cloud servers. However, to achieve the objective of delay reduction remains challenging for offloading strategies due to the resource limitation of fog devices. In addition, a high rate of task requests combined with heavy tasks (i.e., large task size) may cause a high imbalance of workload distribution among the heterogeneous fog devices. To cope with the situation, this paper proposes a dynamic task offloading (DTO) approach, which is based on the resource states of fog devices to derive the task offloading policy dynamically. Accordingly, a task can be executed by either a single fog or multiple fog devices through parallel computation of subtasks to reduce the task execution delay. Through the extensive simulation analysis, the proposed approaches show potential advantages in reducing the average delay significantly in the systems with high rate of service requests and heterogeneous fog environment compared with the existing solutions.\",\"PeriodicalId\":359190,\"journal\":{\"name\":\"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/indin51773.2022.9976147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/indin51773.2022.9976147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Task Offloading Approach for Task Delay Reduction in the IoT-enabled Fog Computing Systems
Fog computing systems (FCS) have been widely integrated in the IoT-based applications aiming to improve the quality of services (QoS) such as low response service delay by performing the task computation nearby the task generation sources (i.e., IoT devices) on behalf of remote cloud servers. However, to achieve the objective of delay reduction remains challenging for offloading strategies due to the resource limitation of fog devices. In addition, a high rate of task requests combined with heavy tasks (i.e., large task size) may cause a high imbalance of workload distribution among the heterogeneous fog devices. To cope with the situation, this paper proposes a dynamic task offloading (DTO) approach, which is based on the resource states of fog devices to derive the task offloading policy dynamically. Accordingly, a task can be executed by either a single fog or multiple fog devices through parallel computation of subtasks to reduce the task execution delay. Through the extensive simulation analysis, the proposed approaches show potential advantages in reducing the average delay significantly in the systems with high rate of service requests and heterogeneous fog environment compared with the existing solutions.