E. Colina, M. Falconi, Villie Morocho, Jose Medina, A. Mora
{"title":"熟料窑运行监控系统的设计","authors":"E. Colina, M. Falconi, Villie Morocho, Jose Medina, A. Mora","doi":"10.1109/APCASE.2015.75","DOIUrl":null,"url":null,"abstract":"The Clinker kiln is the core of the cement production process, which is a heavy infrastructure, where a mixture of limestone and clay undergoes physical and chemical transformations at high temperatures. The process has a very complex non-linear behavior, which hinders its control automatically. This article presents the design of a fuzzy logic-based supervisory system for control tasks upon the Clinker kiln operation [1]. The proposed supervisory system, which has been tested offline in an industrial kiln, uses process variables as the temperature in the burning area, the percentage of oxygen and the back-end temperature, to take appropriate control actions to face operating kiln conditions. The considered control variables in the design are the fuel flow to the burner, the air fan speed and the kiln rotational speed. As a result, the supervisory control system tests showed an improvement in kiln stability and clinker production.","PeriodicalId":235698,"journal":{"name":"2015 Asia-Pacific Conference on Computer Aided System Engineering","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design of a Supervisory Control System for a Clinker Kiln Operation\",\"authors\":\"E. Colina, M. Falconi, Villie Morocho, Jose Medina, A. Mora\",\"doi\":\"10.1109/APCASE.2015.75\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Clinker kiln is the core of the cement production process, which is a heavy infrastructure, where a mixture of limestone and clay undergoes physical and chemical transformations at high temperatures. The process has a very complex non-linear behavior, which hinders its control automatically. This article presents the design of a fuzzy logic-based supervisory system for control tasks upon the Clinker kiln operation [1]. The proposed supervisory system, which has been tested offline in an industrial kiln, uses process variables as the temperature in the burning area, the percentage of oxygen and the back-end temperature, to take appropriate control actions to face operating kiln conditions. The considered control variables in the design are the fuel flow to the burner, the air fan speed and the kiln rotational speed. As a result, the supervisory control system tests showed an improvement in kiln stability and clinker production.\",\"PeriodicalId\":235698,\"journal\":{\"name\":\"2015 Asia-Pacific Conference on Computer Aided System Engineering\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Asia-Pacific Conference on Computer Aided System Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCASE.2015.75\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Asia-Pacific Conference on Computer Aided System Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCASE.2015.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a Supervisory Control System for a Clinker Kiln Operation
The Clinker kiln is the core of the cement production process, which is a heavy infrastructure, where a mixture of limestone and clay undergoes physical and chemical transformations at high temperatures. The process has a very complex non-linear behavior, which hinders its control automatically. This article presents the design of a fuzzy logic-based supervisory system for control tasks upon the Clinker kiln operation [1]. The proposed supervisory system, which has been tested offline in an industrial kiln, uses process variables as the temperature in the burning area, the percentage of oxygen and the back-end temperature, to take appropriate control actions to face operating kiln conditions. The considered control variables in the design are the fuel flow to the burner, the air fan speed and the kiln rotational speed. As a result, the supervisory control system tests showed an improvement in kiln stability and clinker production.