gpu上内核的抢占式协同调度算法

Lionel Eyraud-Dubois, C. Bentes
{"title":"gpu上内核的抢占式协同调度算法","authors":"Lionel Eyraud-Dubois, C. Bentes","doi":"10.1109/HiPC50609.2020.00033","DOIUrl":null,"url":null,"abstract":"Modern GPUs allow concurrent kernel execution and preemption to improve hardware utilization and responsiveness. Currently, the decision on the simultaneous execution of kernels is performed by the hardware, which can lead to unreasonable use of resources. In this work, we tackle the problem of co-scheduling for GPUs in high competition scenarios. We propose a novel graph-based preemptive co-scheduling algorithm, with the focus on reducing the number of preemptions. We show that the optimal preemptive makespan can be computed by solving a Linear Program in polynomial time. Based on this solution we propose graph theoretical model and an algorithm to build preemptive schedules which minimize the number of preemptions. We show, however, that finding the minimum amount of preemptions among all preemptive solutions of optimal makespan is a NP-hard problem. We performed experiments on real-world GPU applications and our approach can achieve optimal makespan by preempting 6 to 9% of the tasks.","PeriodicalId":375004,"journal":{"name":"2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Algorithms for Preemptive Co-scheduling of Kernels on GPUs\",\"authors\":\"Lionel Eyraud-Dubois, C. Bentes\",\"doi\":\"10.1109/HiPC50609.2020.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern GPUs allow concurrent kernel execution and preemption to improve hardware utilization and responsiveness. Currently, the decision on the simultaneous execution of kernels is performed by the hardware, which can lead to unreasonable use of resources. In this work, we tackle the problem of co-scheduling for GPUs in high competition scenarios. We propose a novel graph-based preemptive co-scheduling algorithm, with the focus on reducing the number of preemptions. We show that the optimal preemptive makespan can be computed by solving a Linear Program in polynomial time. Based on this solution we propose graph theoretical model and an algorithm to build preemptive schedules which minimize the number of preemptions. We show, however, that finding the minimum amount of preemptions among all preemptive solutions of optimal makespan is a NP-hard problem. We performed experiments on real-world GPU applications and our approach can achieve optimal makespan by preempting 6 to 9% of the tasks.\",\"PeriodicalId\":375004,\"journal\":{\"name\":\"2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC)\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HiPC50609.2020.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 27th International Conference on High Performance Computing, Data, and Analytics (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC50609.2020.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现代gpu允许并发内核执行和抢占,以提高硬件利用率和响应能力。目前,内核是否同时执行是由硬件来决定的,这可能导致资源的不合理使用。在这项工作中,我们解决了gpu在高竞争场景下的协同调度问题。提出了一种新的基于图的抢占式协同调度算法,该算法的重点是减少抢占的数量。我们证明了在多项式时间内求解一个线性规划可以计算出最优的抢占式最大跨度。在此基础上,提出了一种图论模型,并提出了一种最小化抢占次数的抢占调度算法。然而,我们证明了在所有最优最大时间跨度的抢占解中找到最小的抢占量是一个np困难问题。我们在现实世界的GPU应用程序上进行了实验,我们的方法可以通过抢占6%到9%的任务来实现最佳的makespan。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Algorithms for Preemptive Co-scheduling of Kernels on GPUs
Modern GPUs allow concurrent kernel execution and preemption to improve hardware utilization and responsiveness. Currently, the decision on the simultaneous execution of kernels is performed by the hardware, which can lead to unreasonable use of resources. In this work, we tackle the problem of co-scheduling for GPUs in high competition scenarios. We propose a novel graph-based preemptive co-scheduling algorithm, with the focus on reducing the number of preemptions. We show that the optimal preemptive makespan can be computed by solving a Linear Program in polynomial time. Based on this solution we propose graph theoretical model and an algorithm to build preemptive schedules which minimize the number of preemptions. We show, however, that finding the minimum amount of preemptions among all preemptive solutions of optimal makespan is a NP-hard problem. We performed experiments on real-world GPU applications and our approach can achieve optimal makespan by preempting 6 to 9% of the tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HiPC 2020 ORGANIZATION HiPC 2020 Industry Sponsors PufferFish: NUMA-Aware Work-stealing Library using Elastic Tasks Algorithms for Preemptive Co-scheduling of Kernels on GPUs 27th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC 2020) Technical program
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1