识别-传播-预警:网络舆情预警算法与预测

Lin Sun
{"title":"识别-传播-预警:网络舆情预警算法与预测","authors":"Lin Sun","doi":"10.1145/3609703.3609723","DOIUrl":null,"url":null,"abstract":"In order to better monitor public opinion, this study reviews how the existing thesis work theoretically and practically from the interdisciplinary perspective of communication and computer science and then proposes a new vision under the framework of “identification-dissemination-warning”. Real-life applications include news reports and social media in data collection, emphasizing attitude analysis, building an evaluation system that consisted of four parameters, i.e., event, dissemination, status, and response, determine how serious an emergency is based on how fast public opinion will deteriorate and provide response guidance accordingly. On the theoretical front, this study takes into account the inter-influence between different parameters and optimize semantic analysis, emergency grading and nonlinear processing with the help of Bayesian network, hierarchical network models, grey relational analysis, latent semantic analysis and BP neural network.","PeriodicalId":101485,"journal":{"name":"Proceedings of the 2023 5th International Conference on Pattern Recognition and Intelligent Systems","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification-Dissemination-Warning: Algorithm and Prediction of Early Warning of Network Public Opinion\",\"authors\":\"Lin Sun\",\"doi\":\"10.1145/3609703.3609723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to better monitor public opinion, this study reviews how the existing thesis work theoretically and practically from the interdisciplinary perspective of communication and computer science and then proposes a new vision under the framework of “identification-dissemination-warning”. Real-life applications include news reports and social media in data collection, emphasizing attitude analysis, building an evaluation system that consisted of four parameters, i.e., event, dissemination, status, and response, determine how serious an emergency is based on how fast public opinion will deteriorate and provide response guidance accordingly. On the theoretical front, this study takes into account the inter-influence between different parameters and optimize semantic analysis, emergency grading and nonlinear processing with the help of Bayesian network, hierarchical network models, grey relational analysis, latent semantic analysis and BP neural network.\",\"PeriodicalId\":101485,\"journal\":{\"name\":\"Proceedings of the 2023 5th International Conference on Pattern Recognition and Intelligent Systems\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 5th International Conference on Pattern Recognition and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3609703.3609723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 5th International Conference on Pattern Recognition and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609703.3609723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了更好地监控舆情,本研究从传播学与计算机科学交叉的视角,对现有论文的理论与实践进行了回顾,并在“识别-传播-预警”的框架下提出了新的视角。现实应用包括新闻报道和社交媒体在数据收集方面,强调态度分析,构建由事件、传播、状态、响应四个参数组成的评价体系,根据舆情恶化的速度判断突发事件的严重程度,并提供相应的应对指导。在理论方面,考虑到不同参数之间的相互影响,利用贝叶斯网络、层次网络模型、灰色关联分析、潜在语义分析和BP神经网络对语义分析、应急分级和非线性处理进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification-Dissemination-Warning: Algorithm and Prediction of Early Warning of Network Public Opinion
In order to better monitor public opinion, this study reviews how the existing thesis work theoretically and practically from the interdisciplinary perspective of communication and computer science and then proposes a new vision under the framework of “identification-dissemination-warning”. Real-life applications include news reports and social media in data collection, emphasizing attitude analysis, building an evaluation system that consisted of four parameters, i.e., event, dissemination, status, and response, determine how serious an emergency is based on how fast public opinion will deteriorate and provide response guidance accordingly. On the theoretical front, this study takes into account the inter-influence between different parameters and optimize semantic analysis, emergency grading and nonlinear processing with the help of Bayesian network, hierarchical network models, grey relational analysis, latent semantic analysis and BP neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification-Dissemination-Warning: Algorithm and Prediction of Early Warning of Network Public Opinion Exploration of transfer learning capability of multilingual models for text classification Reconstructing 3D Shapes as an Union of Boxes from Multi-View Images LLFormer: An Efficient and Real-time LiDAR Lane Detection Method based on Transformer Survey of the Formal Verification of Operating Systems in Power Monitoring System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1