用预测方法评价自适应学习的计量经济模型

G. Chernov, I. Susin, Sergey Cheparuhin
{"title":"用预测方法评价自适应学习的计量经济模型","authors":"G. Chernov, I. Susin, Sergey Cheparuhin","doi":"10.2139/ssrn.3658087","DOIUrl":null,"url":null,"abstract":"Game-theoretic models of learning are hard to study even in the laboratory setting due to econometric and practical concerns (like the limited length of an experimental session).<br><br>In particular, as the simulations by (Salmon, 2001) show, in a cross-model (or \"blind'') testing of several models, the data generated by those models does not correspond to the estimated parameters correctly.<br><br>Thus, even when the real data generation process is known we cannot distinguish correct models from incorrect ones by looking at the estimates.<br><br>However, we demonstrate that under the same conditions, models are clearly distinguishable if we compare predictions that the models make instead of comparing the model parameters.<br><br>We also provide a rationale for why this cross-model predictive quality is a particularly relevant way for improving learning models.","PeriodicalId":224430,"journal":{"name":"Decision-Making in Economics eJournal","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of Econometric Models of Adaptive Learning by Predictive Measures\",\"authors\":\"G. Chernov, I. Susin, Sergey Cheparuhin\",\"doi\":\"10.2139/ssrn.3658087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Game-theoretic models of learning are hard to study even in the laboratory setting due to econometric and practical concerns (like the limited length of an experimental session).<br><br>In particular, as the simulations by (Salmon, 2001) show, in a cross-model (or \\\"blind'') testing of several models, the data generated by those models does not correspond to the estimated parameters correctly.<br><br>Thus, even when the real data generation process is known we cannot distinguish correct models from incorrect ones by looking at the estimates.<br><br>However, we demonstrate that under the same conditions, models are clearly distinguishable if we compare predictions that the models make instead of comparing the model parameters.<br><br>We also provide a rationale for why this cross-model predictive quality is a particularly relevant way for improving learning models.\",\"PeriodicalId\":224430,\"journal\":{\"name\":\"Decision-Making in Economics eJournal\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision-Making in Economics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3658087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision-Making in Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3658087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于计量经济学和实践方面的考虑(比如实验时间的限制),即使在实验室环境下,博弈论学习模型也很难研究。特别是,正如(Salmon, 2001)的模拟所显示的那样,在几个模型的交叉模型(或“盲”)测试中,这些模型产生的数据与估计的参数不正确对应。因此,即使真实的数据生成过程是已知的,我们也无法通过查看估计来区分正确的模型和不正确的模型。然而,我们证明,在相同的条件下,如果我们比较模型所做的预测,而不是比较模型参数,模型是明显可区分的。我们还提供了一个基本原理,为什么这种跨模型预测质量是改进学习模型的特别相关的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Econometric Models of Adaptive Learning by Predictive Measures
Game-theoretic models of learning are hard to study even in the laboratory setting due to econometric and practical concerns (like the limited length of an experimental session).

In particular, as the simulations by (Salmon, 2001) show, in a cross-model (or "blind'') testing of several models, the data generated by those models does not correspond to the estimated parameters correctly.

Thus, even when the real data generation process is known we cannot distinguish correct models from incorrect ones by looking at the estimates.

However, we demonstrate that under the same conditions, models are clearly distinguishable if we compare predictions that the models make instead of comparing the model parameters.

We also provide a rationale for why this cross-model predictive quality is a particularly relevant way for improving learning models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mean-Variance Market Timing the U.S. Stock Market Depression and Shopping Behavior Memory and Trading Contracting on What Firm Owners Value Stuck in the Wisdom of Crowds: Information, Knowledge, and Heuristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1