理想下肢外骨骼辅助下的行走运动学和肌肉活动预测

Neethan Ratnakumar, Vinay Devulapalli, Niranjan Deepak, Xianlian Zhou
{"title":"理想下肢外骨骼辅助下的行走运动学和肌肉活动预测","authors":"Neethan Ratnakumar, Vinay Devulapalli, Niranjan Deepak, Xianlian Zhou","doi":"10.17077/dhm.31769","DOIUrl":null,"url":null,"abstract":"This study examines the biomechanical effects of idealized multi-joint exoskeleton assistances on hip, knee, and ankle joints. We conducted predictive simulations of walking without assistance and with seven different assistance cases including assistance to each joint, assistance to any two joints, and assistance to all three joints. A 2D musculoskeletal model with 10 degrees of freedom and 18 muscles was used and the OpenSim Moco optimal control solver was employed for all predictive simulations, which aimed to minimize the weighted sum of several objectives including metabolic cost, muscle activation, joint coordinate acceleration, motion tracking, and whole-body center of mass (COM) acceleration. The results showed that all assistance cases changed the joint kinematics of the walking motion to different degrees and for most cases the exoskeleton assistance reduced muscle effort substantially. By comparing with the unassisted case, we found that the two cases with assistance to all three joints and to the hip-ankle joints both provided more than 50% reduction in metabolic cost of transport (COT), followed by assistance to hip-knee and knee-ankle joints with less than 40% reduction. As for the single joint assistance cases, assistance to the hip joint appeared to be the most effective with around 34% reduction in COT, followed by the assistance to the ankle joint with around 22% reduction, whereas the assistance to the knee joint was much less effective (with less than 10%).","PeriodicalId":111717,"journal":{"name":"Proceedings of the 7th International Digital Human Modeling Symposium (DHM 2022) and Iowa Virtual Human Summit 2022 -","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of walking kinematics and muscle activities under idealized lower limb exoskeleton assistances\",\"authors\":\"Neethan Ratnakumar, Vinay Devulapalli, Niranjan Deepak, Xianlian Zhou\",\"doi\":\"10.17077/dhm.31769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the biomechanical effects of idealized multi-joint exoskeleton assistances on hip, knee, and ankle joints. We conducted predictive simulations of walking without assistance and with seven different assistance cases including assistance to each joint, assistance to any two joints, and assistance to all three joints. A 2D musculoskeletal model with 10 degrees of freedom and 18 muscles was used and the OpenSim Moco optimal control solver was employed for all predictive simulations, which aimed to minimize the weighted sum of several objectives including metabolic cost, muscle activation, joint coordinate acceleration, motion tracking, and whole-body center of mass (COM) acceleration. The results showed that all assistance cases changed the joint kinematics of the walking motion to different degrees and for most cases the exoskeleton assistance reduced muscle effort substantially. By comparing with the unassisted case, we found that the two cases with assistance to all three joints and to the hip-ankle joints both provided more than 50% reduction in metabolic cost of transport (COT), followed by assistance to hip-knee and knee-ankle joints with less than 40% reduction. As for the single joint assistance cases, assistance to the hip joint appeared to be the most effective with around 34% reduction in COT, followed by the assistance to the ankle joint with around 22% reduction, whereas the assistance to the knee joint was much less effective (with less than 10%).\",\"PeriodicalId\":111717,\"journal\":{\"name\":\"Proceedings of the 7th International Digital Human Modeling Symposium (DHM 2022) and Iowa Virtual Human Summit 2022 -\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Digital Human Modeling Symposium (DHM 2022) and Iowa Virtual Human Summit 2022 -\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17077/dhm.31769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Digital Human Modeling Symposium (DHM 2022) and Iowa Virtual Human Summit 2022 -","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17077/dhm.31769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了理想的多关节外骨骼辅助装置对髋关节、膝关节和踝关节的生物力学影响。我们进行了无辅助和七种不同辅助情况下行走的预测模拟,包括对每个关节的辅助,对任意两个关节的辅助,以及对所有三个关节的辅助。采用10个自由度、18块肌肉的二维肌肉骨骼模型,采用OpenSim Moco最优控制求解器进行所有预测仿真,旨在最小化代谢成本、肌肉激活、关节坐标加速度、运动跟踪和全身质心加速度等几个目标的加权和。结果表明,所有的辅助情况都不同程度地改变了步行运动的关节运动学,在大多数情况下,外骨骼辅助大大减少了肌肉的努力。通过与无辅助的病例比较,我们发现,辅助三个关节和髋关节-踝关节的两例患者的代谢运输成本(COT)均降低50%以上,其次是辅助髋关节-膝关节和膝关节-踝关节的代谢运输成本(COT)降低不到40%。对于单关节辅助病例,髋关节的辅助似乎是最有效的,大约减少了34%的COT,其次是踝关节的辅助,大约减少了22%,而膝关节的辅助效果要差得多(不到10%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of walking kinematics and muscle activities under idealized lower limb exoskeleton assistances
This study examines the biomechanical effects of idealized multi-joint exoskeleton assistances on hip, knee, and ankle joints. We conducted predictive simulations of walking without assistance and with seven different assistance cases including assistance to each joint, assistance to any two joints, and assistance to all three joints. A 2D musculoskeletal model with 10 degrees of freedom and 18 muscles was used and the OpenSim Moco optimal control solver was employed for all predictive simulations, which aimed to minimize the weighted sum of several objectives including metabolic cost, muscle activation, joint coordinate acceleration, motion tracking, and whole-body center of mass (COM) acceleration. The results showed that all assistance cases changed the joint kinematics of the walking motion to different degrees and for most cases the exoskeleton assistance reduced muscle effort substantially. By comparing with the unassisted case, we found that the two cases with assistance to all three joints and to the hip-ankle joints both provided more than 50% reduction in metabolic cost of transport (COT), followed by assistance to hip-knee and knee-ankle joints with less than 40% reduction. As for the single joint assistance cases, assistance to the hip joint appeared to be the most effective with around 34% reduction in COT, followed by the assistance to the ankle joint with around 22% reduction, whereas the assistance to the knee joint was much less effective (with less than 10%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design concept evaluation in digital human modeling tools Prediction of walking kinematics and muscle activities under idealized lower limb exoskeleton assistances Forward and Backwards Reaching Inverse Kinematics (FABRIK) solver for DHM: A pilot study Methods for including human variability in system performance models Identifying the best objective function weightings to predict comfortable motorcycle riding postures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1