基于仿真的模型评价方法

D. Allcroft, C. Glasbey
{"title":"基于仿真的模型评价方法","authors":"D. Allcroft, C. Glasbey","doi":"10.1191/1471082X03st044oa","DOIUrl":null,"url":null,"abstract":"We wish to evaluate and compare models that are non-nested and fit to data using different fitting criteria. We first estimate parameters in all models by optimizing goodness-of-fit to a dataset. Then, to assess a candidate model, we simulate a population of datasets from it and evaluate the goodness-of-fit of all the models, without re-estimating parameter values. Finally, we see whether the vector of goodness-of-fit criteria for the original data is compatible with the multivariate distribution of these criteria for the simulated datasets. By simulating from each model in turn, we determine whether any, or several, models are consistent with the data. We apply the method to compare three models, fit at different temporal resolutions to binary time series of animal behaviour data, concluding that a semi-Markov model gives a better fit than latent Gaussian and hidden Markov models.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A simulation-based method for model evaluation\",\"authors\":\"D. Allcroft, C. Glasbey\",\"doi\":\"10.1191/1471082X03st044oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We wish to evaluate and compare models that are non-nested and fit to data using different fitting criteria. We first estimate parameters in all models by optimizing goodness-of-fit to a dataset. Then, to assess a candidate model, we simulate a population of datasets from it and evaluate the goodness-of-fit of all the models, without re-estimating parameter values. Finally, we see whether the vector of goodness-of-fit criteria for the original data is compatible with the multivariate distribution of these criteria for the simulated datasets. By simulating from each model in turn, we determine whether any, or several, models are consistent with the data. We apply the method to compare three models, fit at different temporal resolutions to binary time series of animal behaviour data, concluding that a semi-Markov model gives a better fit than latent Gaussian and hidden Markov models.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082X03st044oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X03st044oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

我们希望评估和比较非嵌套模型,并使用不同的拟合标准来拟合数据。我们首先通过优化数据集的拟合优度来估计所有模型中的参数。然后,为了评估候选模型,我们模拟了来自该模型的数据集的总体,并评估了所有模型的拟合优度,而无需重新估计参数值。最后,我们查看原始数据的拟合优度标准向量是否与模拟数据集的这些标准的多变量分布兼容。通过对每个模型依次进行模拟,我们确定是否有一个或几个模型与数据一致。我们应用该方法比较了三种模型,在不同时间分辨率下拟合动物行为数据的二进制时间序列,得出结论:半马尔可夫模型比隐高斯模型和隐马尔可夫模型具有更好的拟合效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simulation-based method for model evaluation
We wish to evaluate and compare models that are non-nested and fit to data using different fitting criteria. We first estimate parameters in all models by optimizing goodness-of-fit to a dataset. Then, to assess a candidate model, we simulate a population of datasets from it and evaluate the goodness-of-fit of all the models, without re-estimating parameter values. Finally, we see whether the vector of goodness-of-fit criteria for the original data is compatible with the multivariate distribution of these criteria for the simulated datasets. By simulating from each model in turn, we determine whether any, or several, models are consistent with the data. We apply the method to compare three models, fit at different temporal resolutions to binary time series of animal behaviour data, concluding that a semi-Markov model gives a better fit than latent Gaussian and hidden Markov models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of auxiliary data in semi-parametric spatial regression with nonignorable missing responses Bayesian modeling for genetic association in case-control studies: accounting for unknown population substructure GLMM approach to study the spatial and temporal evolution of spikes in the small intestine Comparing nonparametric surfaces Analyzing the emergence times of permanent teeth: an example of modeling the covariance matrix with interval-censored data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1