计算流体动力学的基本解

L. Skerget, A. Tadeu, J. Ravnik
{"title":"计算流体动力学的基本解","authors":"L. Skerget, A. Tadeu, J. Ravnik","doi":"10.2495/AFM180011","DOIUrl":null,"url":null,"abstract":"With the boundary element method (BEM), the velocity-vorticity formulation is introduced and the overall Navier–Stokes problem is partitioned into the kinetic and kinematic parts. For a general viscous flow, the kinetics is formulated as a differential nonlinear vorticity diffusion-convective transport equation, whilst the kinematics of the fluid flow computation is governed by the Biot– Savart integral representation. This work presents an overview of the numerical simulation of transport phenomena in fluid flow using a different type of Green’s fundamental solutions in the context of BEM. The kinetic diffusion-convective partial differential equations (PDEs) represent, respectively, mixed elliptic-hyperbolic or parabolic-hyperbolic types of PDEs, governing the steady or time dependent transport phenomena in fluid flow, e.g. transfer of heat energy, momentum, vorticity, etc. Applying the singular integral representations has important numerical and physical aspects as a consequence of the fundamental solutions applied. The solution algorithm is based on improved macro-elements concept using mixed-boundary elements. The numerical model uses quadratic approximation for all field functions and linear approximation of the fluxes over space and constant approximation over time for all field functions.","PeriodicalId":261351,"journal":{"name":"Advances in Fluid Mechanics XII","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FUNDAMENTAL SOLUTIONS IN COMPUTATIONAL FLUID DYNAMICS\",\"authors\":\"L. Skerget, A. Tadeu, J. Ravnik\",\"doi\":\"10.2495/AFM180011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the boundary element method (BEM), the velocity-vorticity formulation is introduced and the overall Navier–Stokes problem is partitioned into the kinetic and kinematic parts. For a general viscous flow, the kinetics is formulated as a differential nonlinear vorticity diffusion-convective transport equation, whilst the kinematics of the fluid flow computation is governed by the Biot– Savart integral representation. This work presents an overview of the numerical simulation of transport phenomena in fluid flow using a different type of Green’s fundamental solutions in the context of BEM. The kinetic diffusion-convective partial differential equations (PDEs) represent, respectively, mixed elliptic-hyperbolic or parabolic-hyperbolic types of PDEs, governing the steady or time dependent transport phenomena in fluid flow, e.g. transfer of heat energy, momentum, vorticity, etc. Applying the singular integral representations has important numerical and physical aspects as a consequence of the fundamental solutions applied. The solution algorithm is based on improved macro-elements concept using mixed-boundary elements. The numerical model uses quadratic approximation for all field functions and linear approximation of the fluxes over space and constant approximation over time for all field functions.\",\"PeriodicalId\":261351,\"journal\":{\"name\":\"Advances in Fluid Mechanics XII\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Fluid Mechanics XII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/AFM180011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Fluid Mechanics XII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/AFM180011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用边界元法(BEM),引入速度-涡量公式,将整个Navier-Stokes问题划分为动力学部分和运动学部分。对于一般的粘性流动,动力学被表示为微分非线性涡度扩散-对流输运方程,而流体流动计算的运动学由Biot - Savart积分表示控制。本工作概述了流体流动中输运现象的数值模拟,在边界元的背景下使用不同类型的格林基本解。动力学扩散-对流偏微分方程(PDEs)分别表示混合椭圆-双曲型或抛物-双曲型偏微分方程,控制流体流动中的稳态或时变输运现象,如热能、动量、涡量等的传递。由于应用了基本解,应用奇异积分表示具有重要的数值和物理方面的意义。求解算法基于改进的宏元素概念,采用混合边界元素。数值模型对所有场函数使用二次逼近,对通量在空间上使用线性逼近,对所有场函数使用随时间的常数逼近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FUNDAMENTAL SOLUTIONS IN COMPUTATIONAL FLUID DYNAMICS
With the boundary element method (BEM), the velocity-vorticity formulation is introduced and the overall Navier–Stokes problem is partitioned into the kinetic and kinematic parts. For a general viscous flow, the kinetics is formulated as a differential nonlinear vorticity diffusion-convective transport equation, whilst the kinematics of the fluid flow computation is governed by the Biot– Savart integral representation. This work presents an overview of the numerical simulation of transport phenomena in fluid flow using a different type of Green’s fundamental solutions in the context of BEM. The kinetic diffusion-convective partial differential equations (PDEs) represent, respectively, mixed elliptic-hyperbolic or parabolic-hyperbolic types of PDEs, governing the steady or time dependent transport phenomena in fluid flow, e.g. transfer of heat energy, momentum, vorticity, etc. Applying the singular integral representations has important numerical and physical aspects as a consequence of the fundamental solutions applied. The solution algorithm is based on improved macro-elements concept using mixed-boundary elements. The numerical model uses quadratic approximation for all field functions and linear approximation of the fluxes over space and constant approximation over time for all field functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FUNDAMENTAL SOLUTIONS IN COMPUTATIONAL FLUID DYNAMICS PRESSURE LOSS OF WATER–CO2 TWO-PHASE FLOW UNDER DIFFERENT OPERATING CONDITIONS COMPARATIVE ANALYSIS OF HIGH-LIFT AIRFOILS FOR MOTORSPORTS APPLICATIONS HEAT TRANSFER ANALYSIS FOR LI-ION BATTERY PACKAGE WITH A HYBRID THERMAL MANAGEMENT SYSTEM USING PHASE CHANGE MATERIAL AND FORCED CONVECTION COMPARATIVE STUDY OF THE AERODYNAMIC PERFORMANCES OF MOTORCYCLE RACING WHEELS USING NUMERICAL CFD SIMULATIONS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1