{"title":"神经网络模型的在线滑动窗口Levenberg-Marquardt方法","authors":"P. Ferreira, A. Ruano","doi":"10.1109/WISP.2007.4447542","DOIUrl":null,"url":null,"abstract":"On-line learning algorithms are needed when the process to be modeled is time-varying or when it is impossible to obtain off-line data that covers the whole operating region. To minimize the problems of parameter shadowing and interference, sliding-based algorithms are used. It is shown that, by using a sliding window policy that enforces the novelty of data stored in the sliding window, and by using a procedure to prevent unnecessary parameter updates, the performance achieved is improved over a FIFO policy with fixed parameter updates. Important savings in computational effort are also obtained.","PeriodicalId":164902,"journal":{"name":"2007 IEEE International Symposium on Intelligent Signal Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On-line sliding-window Levenberg-Marquardt methods for neural network models\",\"authors\":\"P. Ferreira, A. Ruano\",\"doi\":\"10.1109/WISP.2007.4447542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-line learning algorithms are needed when the process to be modeled is time-varying or when it is impossible to obtain off-line data that covers the whole operating region. To minimize the problems of parameter shadowing and interference, sliding-based algorithms are used. It is shown that, by using a sliding window policy that enforces the novelty of data stored in the sliding window, and by using a procedure to prevent unnecessary parameter updates, the performance achieved is improved over a FIFO policy with fixed parameter updates. Important savings in computational effort are also obtained.\",\"PeriodicalId\":164902,\"journal\":{\"name\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISP.2007.4447542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Intelligent Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISP.2007.4447542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On-line sliding-window Levenberg-Marquardt methods for neural network models
On-line learning algorithms are needed when the process to be modeled is time-varying or when it is impossible to obtain off-line data that covers the whole operating region. To minimize the problems of parameter shadowing and interference, sliding-based algorithms are used. It is shown that, by using a sliding window policy that enforces the novelty of data stored in the sliding window, and by using a procedure to prevent unnecessary parameter updates, the performance achieved is improved over a FIFO policy with fixed parameter updates. Important savings in computational effort are also obtained.