Hisham Alasmary, Ahmed A. Abusnaina, Rhongho Jang, M. Abuhamad, Afsah Anwar, Daehun Nyang, David A. Mohaisen
{"title":"Soteria:在基于控制流图的恶意软件分类器中检测对抗性示例","authors":"Hisham Alasmary, Ahmed A. Abusnaina, Rhongho Jang, M. Abuhamad, Afsah Anwar, Daehun Nyang, David A. Mohaisen","doi":"10.1109/ICDCS47774.2020.00089","DOIUrl":null,"url":null,"abstract":"Deep learning algorithms have been widely used for security applications, including malware detection and classification. Recent results have shown that those algorithms are vulnerable to adversarial examples, whereby a small perturbation in the input sample may result in misclassification. In this paper, we systematically tackle the problem of adversarial examples detection in the control flow graph (CFG) based classifiers for malware detection using Soteria. Unique to Soteria, we use both density-based and level-based labels for CFG labeling to yield a consistent representation, a random walk-based traversal approach for feature extraction, and n-gram based module for feature representation. End-to-end, Soteria’s representation ensures a simple yet powerful randomization property of the used classification features, making it difficult even for a powerful adversary to launch a successful attack. Soteria also employs a deep learning approach, consisting of an auto-encoder for detecting adversarial examples, and a CNN architecture for detecting and classifying malware samples. We evaluate the performance of Soteria, using a large dataset consisting of 16,814 IoT samples, and demonstrate its superiority in comparison with state-of-the-art approaches. In particular, Soteria yields an accuracy rate of 97.79% for detecting AEs, and 99.91% overall accuracy for classification malware families.","PeriodicalId":158630,"journal":{"name":"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Soteria: Detecting Adversarial Examples in Control Flow Graph-based Malware Classifiers\",\"authors\":\"Hisham Alasmary, Ahmed A. Abusnaina, Rhongho Jang, M. Abuhamad, Afsah Anwar, Daehun Nyang, David A. Mohaisen\",\"doi\":\"10.1109/ICDCS47774.2020.00089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning algorithms have been widely used for security applications, including malware detection and classification. Recent results have shown that those algorithms are vulnerable to adversarial examples, whereby a small perturbation in the input sample may result in misclassification. In this paper, we systematically tackle the problem of adversarial examples detection in the control flow graph (CFG) based classifiers for malware detection using Soteria. Unique to Soteria, we use both density-based and level-based labels for CFG labeling to yield a consistent representation, a random walk-based traversal approach for feature extraction, and n-gram based module for feature representation. End-to-end, Soteria’s representation ensures a simple yet powerful randomization property of the used classification features, making it difficult even for a powerful adversary to launch a successful attack. Soteria also employs a deep learning approach, consisting of an auto-encoder for detecting adversarial examples, and a CNN architecture for detecting and classifying malware samples. We evaluate the performance of Soteria, using a large dataset consisting of 16,814 IoT samples, and demonstrate its superiority in comparison with state-of-the-art approaches. In particular, Soteria yields an accuracy rate of 97.79% for detecting AEs, and 99.91% overall accuracy for classification malware families.\",\"PeriodicalId\":158630,\"journal\":{\"name\":\"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS47774.2020.00089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS47774.2020.00089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Soteria: Detecting Adversarial Examples in Control Flow Graph-based Malware Classifiers
Deep learning algorithms have been widely used for security applications, including malware detection and classification. Recent results have shown that those algorithms are vulnerable to adversarial examples, whereby a small perturbation in the input sample may result in misclassification. In this paper, we systematically tackle the problem of adversarial examples detection in the control flow graph (CFG) based classifiers for malware detection using Soteria. Unique to Soteria, we use both density-based and level-based labels for CFG labeling to yield a consistent representation, a random walk-based traversal approach for feature extraction, and n-gram based module for feature representation. End-to-end, Soteria’s representation ensures a simple yet powerful randomization property of the used classification features, making it difficult even for a powerful adversary to launch a successful attack. Soteria also employs a deep learning approach, consisting of an auto-encoder for detecting adversarial examples, and a CNN architecture for detecting and classifying malware samples. We evaluate the performance of Soteria, using a large dataset consisting of 16,814 IoT samples, and demonstrate its superiority in comparison with state-of-the-art approaches. In particular, Soteria yields an accuracy rate of 97.79% for detecting AEs, and 99.91% overall accuracy for classification malware families.