基于实例的对话检索递归神经网络释义识别

Lasguido Nio, S. Sakti, Graham Neubig, T. Toda, Satoshi Nakamura
{"title":"基于实例的对话检索递归神经网络释义识别","authors":"Lasguido Nio, S. Sakti, Graham Neubig, T. Toda, Satoshi Nakamura","doi":"10.1109/APSIPA.2014.7041777","DOIUrl":null,"url":null,"abstract":"An example-based dialog model often require a lot of data collections to achieve a good performance. However, when it comes on handling an out of vocabulary (OOV) database queries, this approach resulting in weakness and inadequate handling of interactions between words in the sentence. In this work, we try to overcome this problem by utilizing recursive neural network paraphrase identification to improve the robustness of example-based dialog response retrieval. We model our dialog-pair database and user input query with distributed word representations, and employ recursive autoencoders and dynamic pooling to determine whether two sentences with arbitrary length have the same meaning. The distributed representations have the potential to improve handling of OOV cases, and the recursive structure can reduce confusion in example matching.","PeriodicalId":231382,"journal":{"name":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recursive neural network paraphrase identification for example-based dialog retrieval\",\"authors\":\"Lasguido Nio, S. Sakti, Graham Neubig, T. Toda, Satoshi Nakamura\",\"doi\":\"10.1109/APSIPA.2014.7041777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An example-based dialog model often require a lot of data collections to achieve a good performance. However, when it comes on handling an out of vocabulary (OOV) database queries, this approach resulting in weakness and inadequate handling of interactions between words in the sentence. In this work, we try to overcome this problem by utilizing recursive neural network paraphrase identification to improve the robustness of example-based dialog response retrieval. We model our dialog-pair database and user input query with distributed word representations, and employ recursive autoencoders and dynamic pooling to determine whether two sentences with arbitrary length have the same meaning. The distributed representations have the potential to improve handling of OOV cases, and the recursive structure can reduce confusion in example matching.\",\"PeriodicalId\":231382,\"journal\":{\"name\":\"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2014.7041777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2014.7041777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于示例的对话框模型通常需要大量的数据收集才能获得良好的性能。然而,在处理词汇量不足(OOV)数据库查询时,这种方法会导致对句子中单词之间交互的处理不足。在这项工作中,我们试图通过使用递归神经网络释义识别来克服这个问题,以提高基于示例的对话响应检索的鲁棒性。我们使用分布式单词表示对对话对数据库和用户输入查询进行建模,并使用递归自动编码器和动态池来确定任意长度的两个句子是否具有相同的含义。分布式表示有可能改善对OOV情况的处理,递归结构可以减少示例匹配中的混淆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recursive neural network paraphrase identification for example-based dialog retrieval
An example-based dialog model often require a lot of data collections to achieve a good performance. However, when it comes on handling an out of vocabulary (OOV) database queries, this approach resulting in weakness and inadequate handling of interactions between words in the sentence. In this work, we try to overcome this problem by utilizing recursive neural network paraphrase identification to improve the robustness of example-based dialog response retrieval. We model our dialog-pair database and user input query with distributed word representations, and employ recursive autoencoders and dynamic pooling to determine whether two sentences with arbitrary length have the same meaning. The distributed representations have the potential to improve handling of OOV cases, and the recursive structure can reduce confusion in example matching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smoothing of spatial filter by graph Fourier transform for EEG signals Intra line copy for HEVC screen content coding Design of FPGA-based rapid prototype spectral subtraction for hands-free speech applications Fetal ECG extraction using adaptive functional link artificial neural network Opened Pins Recommendation System to promote tourism sector in Chiang Rai Thailand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1