基于全变分的傅里叶重建和计算机断层扫描正则化

Xiao-Qun Zhang, Jacques Froment
{"title":"基于全变分的傅里叶重建和计算机断层扫描正则化","authors":"Xiao-Qun Zhang, Jacques Froment","doi":"10.1109/NSSMIC.2005.1596801","DOIUrl":null,"url":null,"abstract":"The paper develops a tomographic reconstruction and regularization method based on a total variation minimization constrained by the knowledge of the input intervals the Fourier coefficients belong to. Experiments show that the approach outperforms classical reconstruction methods such as direct Fourier method (DFM), filtered back-projection (FBP) and Tikhonov iterative method (TIM), both in terms of PSNR (an objective mean-square error) and visual quality, especially in the case of noisy or sparse data. In addition the resulting algorithm requires a number of operations of O(N/sup 2/ log N) only, and is therefore faster than ordinary iterative methods, such as space-based TIM.","PeriodicalId":105619,"journal":{"name":"IEEE Nuclear Science Symposium Conference Record, 2005","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Total variation based Fourier reconstruction and regularization for computer tomography\",\"authors\":\"Xiao-Qun Zhang, Jacques Froment\",\"doi\":\"10.1109/NSSMIC.2005.1596801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper develops a tomographic reconstruction and regularization method based on a total variation minimization constrained by the knowledge of the input intervals the Fourier coefficients belong to. Experiments show that the approach outperforms classical reconstruction methods such as direct Fourier method (DFM), filtered back-projection (FBP) and Tikhonov iterative method (TIM), both in terms of PSNR (an objective mean-square error) and visual quality, especially in the case of noisy or sparse data. In addition the resulting algorithm requires a number of operations of O(N/sup 2/ log N) only, and is therefore faster than ordinary iterative methods, such as space-based TIM.\",\"PeriodicalId\":105619,\"journal\":{\"name\":\"IEEE Nuclear Science Symposium Conference Record, 2005\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nuclear Science Symposium Conference Record, 2005\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2005.1596801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium Conference Record, 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2005.1596801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

本文提出了一种基于傅里叶系数所属输入区间知识约束下的总变差最小化的层析重建和正则化方法。实验表明,该方法在PSNR(客观均方误差)和视觉质量方面优于经典的重建方法,如直接傅立叶方法(DFM)、滤波反投影(FBP)和Tikhonov迭代方法(TIM),特别是在有噪声或稀疏数据的情况下。此外,所得到的算法只需要O(N/sup 2/ log N)的一些操作,因此比普通的迭代方法(如天基TIM)更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Total variation based Fourier reconstruction and regularization for computer tomography
The paper develops a tomographic reconstruction and regularization method based on a total variation minimization constrained by the knowledge of the input intervals the Fourier coefficients belong to. Experiments show that the approach outperforms classical reconstruction methods such as direct Fourier method (DFM), filtered back-projection (FBP) and Tikhonov iterative method (TIM), both in terms of PSNR (an objective mean-square error) and visual quality, especially in the case of noisy or sparse data. In addition the resulting algorithm requires a number of operations of O(N/sup 2/ log N) only, and is therefore faster than ordinary iterative methods, such as space-based TIM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monte Carlo optimization of an industrial tomography system A scalable system for microcalcification cluster automated detection in a distributed mammographic database The BaBar muon system upgrade Fast, long-wavelength scintillators and waveshifters New effects observed in the BaBar silicon vertex tracker: interpretation and estimate of their impact on the future performance of the detector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1