完全分散的网络多核在线学习

Jeongmin Chae, U. Mitra, Songnam Hong
{"title":"完全分散的网络多核在线学习","authors":"Jeongmin Chae, U. Mitra, Songnam Hong","doi":"10.1109/GLOBECOM46510.2021.9685264","DOIUrl":null,"url":null,"abstract":"Fully decentralized online learning with multiple kernels (named FDOMKL) is studied, where each node in a network learns a sequence of global functions in an online fashion without the control of a central server. Every node finds the best global function only using information from its one-hop neighboring nodes via online alternating direction method of multipliers (ADMM) and the network-wise Hedge algorithm. The learning framework for an individual node is based on kernel learning and the proposed algorithm successfully harness multi-kernel method to find the best common function over the entire network. To the best of our knowledge, this is the first work that proposes a fully-decentralized online learning algorithm based on multiple kernels. The proposed FDOMKL preserves privacy by maintaining the local data at the edge nodes and exchanging model parameters only. We prove that FDOMKL achieves a sublinear regret bound compared with the best kernel function in hindsight under certain assumptions. In addition, numerical tests on real time-series datasets demonstrate the superiority of the proposed algorithm in terms of learning accuracy and network consistency compared to state-of-the-art single kernel methods.","PeriodicalId":200641,"journal":{"name":"2021 IEEE Global Communications Conference (GLOBECOM)","volume":"4320 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully-Decentralized Multi-Kernel Online Learning over Networks\",\"authors\":\"Jeongmin Chae, U. Mitra, Songnam Hong\",\"doi\":\"10.1109/GLOBECOM46510.2021.9685264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fully decentralized online learning with multiple kernels (named FDOMKL) is studied, where each node in a network learns a sequence of global functions in an online fashion without the control of a central server. Every node finds the best global function only using information from its one-hop neighboring nodes via online alternating direction method of multipliers (ADMM) and the network-wise Hedge algorithm. The learning framework for an individual node is based on kernel learning and the proposed algorithm successfully harness multi-kernel method to find the best common function over the entire network. To the best of our knowledge, this is the first work that proposes a fully-decentralized online learning algorithm based on multiple kernels. The proposed FDOMKL preserves privacy by maintaining the local data at the edge nodes and exchanging model parameters only. We prove that FDOMKL achieves a sublinear regret bound compared with the best kernel function in hindsight under certain assumptions. In addition, numerical tests on real time-series datasets demonstrate the superiority of the proposed algorithm in terms of learning accuracy and network consistency compared to state-of-the-art single kernel methods.\",\"PeriodicalId\":200641,\"journal\":{\"name\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"4320 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM46510.2021.9685264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM46510.2021.9685264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了完全分散的多核在线学习(称为FDOMKL),其中网络中的每个节点在没有中央服务器控制的情况下以在线方式学习一系列全局函数。通过在线交替方向乘法器(ADMM)和面向网络的Hedge算法,每个节点仅利用其一跳相邻节点的信息寻找最佳全局函数。单个节点的学习框架基于核学习,该算法成功地利用多核方法找到整个网络的最佳公共函数。据我们所知,这是第一个提出基于多核的完全分散的在线学习算法的工作。提出的FDOMKL通过在边缘节点上维护本地数据和仅交换模型参数来保护隐私。在一定的假设条件下,事后证明了FDOMKL与最佳核函数相比实现了次线性的遗憾界。此外,在实时时序数据集上的数值测试表明,与最先进的单核方法相比,该算法在学习精度和网络一致性方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fully-Decentralized Multi-Kernel Online Learning over Networks
Fully decentralized online learning with multiple kernels (named FDOMKL) is studied, where each node in a network learns a sequence of global functions in an online fashion without the control of a central server. Every node finds the best global function only using information from its one-hop neighboring nodes via online alternating direction method of multipliers (ADMM) and the network-wise Hedge algorithm. The learning framework for an individual node is based on kernel learning and the proposed algorithm successfully harness multi-kernel method to find the best common function over the entire network. To the best of our knowledge, this is the first work that proposes a fully-decentralized online learning algorithm based on multiple kernels. The proposed FDOMKL preserves privacy by maintaining the local data at the edge nodes and exchanging model parameters only. We prove that FDOMKL achieves a sublinear regret bound compared with the best kernel function in hindsight under certain assumptions. In addition, numerical tests on real time-series datasets demonstrate the superiority of the proposed algorithm in terms of learning accuracy and network consistency compared to state-of-the-art single kernel methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Blockchain-based Energy Trading Scheme for Dynamic Charging of Electric Vehicles Algebraic Design of a Class of Rate 1/3 Quasi-Cyclic LDPC Codes A Fast and Scalable Resource Allocation Scheme for End-to-End Network Slices Modelling of Multi-Tier Handover in LiFi Networks Enabling Efficient Scheduling Policy in Intelligent Reflecting Surface Aided Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1