优化手外科手术中心等待时间的机器学习方法

A. Schuller, M. Braun, Peter Hahn
{"title":"优化手外科手术中心等待时间的机器学习方法","authors":"A. Schuller, M. Braun, Peter Hahn","doi":"10.54941/ahfe1003268","DOIUrl":null,"url":null,"abstract":"For patients scheduled for surgery, long waiting times are unpleasant. However, scheduling that is too patient-oriented can lead to friction losses in the operating room and waiting times for the medical personnel. We have conducted an analysis of historical hand surgery data to improve forecasting of hand surgery durations, optimize operation room scheduling for physicians and patients and reduce overall waiting times. Several models have been evaluated to forecast surgery durations. A quantile-based approach based on the distribution of surgery durations has been tested in a scheduling simulation. This approach has indicated possibilities to gradually balance waiting times between patients and medical personnel. Within a field trial, a trained regression model has been successfully deployed in a hand surgery operation center.","PeriodicalId":405313,"journal":{"name":"Artificial Intelligence and Social Computing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A machine learning approach for optimizing waiting times in a hand surgery operation center\",\"authors\":\"A. Schuller, M. Braun, Peter Hahn\",\"doi\":\"10.54941/ahfe1003268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For patients scheduled for surgery, long waiting times are unpleasant. However, scheduling that is too patient-oriented can lead to friction losses in the operating room and waiting times for the medical personnel. We have conducted an analysis of historical hand surgery data to improve forecasting of hand surgery durations, optimize operation room scheduling for physicians and patients and reduce overall waiting times. Several models have been evaluated to forecast surgery durations. A quantile-based approach based on the distribution of surgery durations has been tested in a scheduling simulation. This approach has indicated possibilities to gradually balance waiting times between patients and medical personnel. Within a field trial, a trained regression model has been successfully deployed in a hand surgery operation center.\",\"PeriodicalId\":405313,\"journal\":{\"name\":\"Artificial Intelligence and Social Computing\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Social Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54941/ahfe1003268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54941/ahfe1003268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于预定手术的病人来说,长时间的等待是不愉快的。然而,过于以病人为中心的安排可能会导致手术室的摩擦损失和医务人员的等待时间。我们对历史手外科数据进行了分析,以改进手外科手术时间的预测,优化医生和患者的手术室安排,减少总体等待时间。已经评估了几种模型来预测手术时间。一种基于手术时间分布的分位数方法已在调度仿真中进行了测试。这种方法表明了逐步平衡病人和医务人员等待时间的可能性。在现场试验中,训练后的回归模型已成功地部署在手外科手术中心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A machine learning approach for optimizing waiting times in a hand surgery operation center
For patients scheduled for surgery, long waiting times are unpleasant. However, scheduling that is too patient-oriented can lead to friction losses in the operating room and waiting times for the medical personnel. We have conducted an analysis of historical hand surgery data to improve forecasting of hand surgery durations, optimize operation room scheduling for physicians and patients and reduce overall waiting times. Several models have been evaluated to forecast surgery durations. A quantile-based approach based on the distribution of surgery durations has been tested in a scheduling simulation. This approach has indicated possibilities to gradually balance waiting times between patients and medical personnel. Within a field trial, a trained regression model has been successfully deployed in a hand surgery operation center.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hepatitis predictive analysis model through deep learning using neural networks based on patient history A machine learning approach for optimizing waiting times in a hand surgery operation center Automated Decision Support for Collaborative, Interactive Classification Dynamically monitoring crowd-worker's reliability with interval-valued labels Detection of inappropriate images on smartphones based on computer vision techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1