ARMA建模的递归阶梯算法

D. L. Lee, B. Friedlander, M. Morf
{"title":"ARMA建模的递归阶梯算法","authors":"D. L. Lee, B. Friedlander, M. Morf","doi":"10.1109/CDC.1980.271998","DOIUrl":null,"url":null,"abstract":"The extension of the all-pole (AR) exact least-squares ladder algorithms to the pole-zero (ARMA) case is presented. The algorithms are based on a general set of recursions obtained by a geometric approach. The recursions obtained are square-root normalized and have much simpler structures than the unnormalized case. The white input as well as the possibly non-white unknown input case are discussed.","PeriodicalId":332964,"journal":{"name":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1980-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"Recursive ladder algorithms for ARMA modeling\",\"authors\":\"D. L. Lee, B. Friedlander, M. Morf\",\"doi\":\"10.1109/CDC.1980.271998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The extension of the all-pole (AR) exact least-squares ladder algorithms to the pole-zero (ARMA) case is presented. The algorithms are based on a general set of recursions obtained by a geometric approach. The recursions obtained are square-root normalized and have much simpler structures than the unnormalized case. The white input as well as the possibly non-white unknown input case are discussed.\",\"PeriodicalId\":332964,\"journal\":{\"name\":\"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1980-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1980.271998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1980.271998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

摘要

将全极点(AR)精确最小二乘阶梯算法推广到极点-零(ARMA)情况。这些算法是基于一组由几何方法得到的递归。得到的递归是平方根归一化的,结构比非归一化的情况简单得多。讨论了白色输入和可能的非白色未知输入情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recursive ladder algorithms for ARMA modeling
The extension of the all-pole (AR) exact least-squares ladder algorithms to the pole-zero (ARMA) case is presented. The algorithms are based on a general set of recursions obtained by a geometric approach. The recursions obtained are square-root normalized and have much simpler structures than the unnormalized case. The white input as well as the possibly non-white unknown input case are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A mathematical approach to organization theory Newton's method and the goldstein step length rule for constrained minimization On linear discrete-time deadbeat control Three steps to alleviate control and observation spillover problems of large space structures Parallel optimization algorithms using sparsity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1