{"title":"因子动物园中的频率相关风险","authors":"Jiantao Huang","doi":"10.2139/ssrn.3948519","DOIUrl":null,"url":null,"abstract":"I propose a novel framework to quantify frequency-dependent risks in the factor zoo. Empirically, the linear stochastic discount factor (SDF) comprised of the first few low-frequency principal components (PCs) yields an out-of-sample monthly Sharpe ratio of 0.37, and other smaller low-frequency PCs are redundant. In contrast, the SDFs consisting of high-frequency and canonical PCs are dense and fail to identify slow-moving conditional information in asset returns. Moreover, I decompose the low-frequency SDF into two orthogonal priced components. The first component, linear in high-frequency PCs, is almost serially uncorrelated and relates to discount-rate news, intermediary factors, jump risk, and investor sentiment. The second component exhibits a persistent conditional dynamic and captures business-cycle risks related to consumption and GDP growth. Overall, asset pricing theory has frequency-dependent relevance.","PeriodicalId":131191,"journal":{"name":"DecisionSciRN: Risk Techniques (Sub-Topic)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency Dependent Risks in the Factor Zoo\",\"authors\":\"Jiantao Huang\",\"doi\":\"10.2139/ssrn.3948519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I propose a novel framework to quantify frequency-dependent risks in the factor zoo. Empirically, the linear stochastic discount factor (SDF) comprised of the first few low-frequency principal components (PCs) yields an out-of-sample monthly Sharpe ratio of 0.37, and other smaller low-frequency PCs are redundant. In contrast, the SDFs consisting of high-frequency and canonical PCs are dense and fail to identify slow-moving conditional information in asset returns. Moreover, I decompose the low-frequency SDF into two orthogonal priced components. The first component, linear in high-frequency PCs, is almost serially uncorrelated and relates to discount-rate news, intermediary factors, jump risk, and investor sentiment. The second component exhibits a persistent conditional dynamic and captures business-cycle risks related to consumption and GDP growth. Overall, asset pricing theory has frequency-dependent relevance.\",\"PeriodicalId\":131191,\"journal\":{\"name\":\"DecisionSciRN: Risk Techniques (Sub-Topic)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DecisionSciRN: Risk Techniques (Sub-Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3948519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DecisionSciRN: Risk Techniques (Sub-Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3948519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
I propose a novel framework to quantify frequency-dependent risks in the factor zoo. Empirically, the linear stochastic discount factor (SDF) comprised of the first few low-frequency principal components (PCs) yields an out-of-sample monthly Sharpe ratio of 0.37, and other smaller low-frequency PCs are redundant. In contrast, the SDFs consisting of high-frequency and canonical PCs are dense and fail to identify slow-moving conditional information in asset returns. Moreover, I decompose the low-frequency SDF into two orthogonal priced components. The first component, linear in high-frequency PCs, is almost serially uncorrelated and relates to discount-rate news, intermediary factors, jump risk, and investor sentiment. The second component exhibits a persistent conditional dynamic and captures business-cycle risks related to consumption and GDP growth. Overall, asset pricing theory has frequency-dependent relevance.