使用遗传编程的进化驱动控制器

M. Ebner, Thorsten Tiede
{"title":"使用遗传编程的进化驱动控制器","authors":"M. Ebner, Thorsten Tiede","doi":"10.1109/CIG.2009.5286465","DOIUrl":null,"url":null,"abstract":"Computational gaming requires the automatic generation of virtual opponents for different game levels. We have turned to artificial evolution to automatically generate such game players. In particular, we have used Genetic Programming to automatically evolve computer programs for computer gaming. With Genetic Programming, in theory, it is possible to generate any kind of program. The programs are not constrained as much as they are in other computational learning approaches, e.g. neural networks. We show how Genetic Programming improved upon a manually crafted race car driver (proportional controller). The open race car simulator TORCS was used to evaluate the virtual drivers.","PeriodicalId":358795,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence and Games","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Evolving driving controllers using Genetic Programming\",\"authors\":\"M. Ebner, Thorsten Tiede\",\"doi\":\"10.1109/CIG.2009.5286465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational gaming requires the automatic generation of virtual opponents for different game levels. We have turned to artificial evolution to automatically generate such game players. In particular, we have used Genetic Programming to automatically evolve computer programs for computer gaming. With Genetic Programming, in theory, it is possible to generate any kind of program. The programs are not constrained as much as they are in other computational learning approaches, e.g. neural networks. We show how Genetic Programming improved upon a manually crafted race car driver (proportional controller). The open race car simulator TORCS was used to evaluate the virtual drivers.\",\"PeriodicalId\":358795,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2009.5286465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2009.5286465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

计算游戏需要为不同的游戏关卡自动生成虚拟对手。我们已经转向人工进化来自动生成这样的游戏玩家。特别是,我们已经使用遗传编程来自动进化电脑游戏的电脑程序。从理论上讲,遗传编程可以生成任何类型的程序。这些程序不像在其他计算学习方法(如神经网络)中那样受到太多约束。我们展示了遗传编程如何在手工制作的赛车驾驶员(比例控制器)上得到改进。利用开放式赛车模拟器TORCS对虚拟车手进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolving driving controllers using Genetic Programming
Computational gaming requires the automatic generation of virtual opponents for different game levels. We have turned to artificial evolution to automatically generate such game players. In particular, we have used Genetic Programming to automatically evolve computer programs for computer gaming. With Genetic Programming, in theory, it is possible to generate any kind of program. The programs are not constrained as much as they are in other computational learning approaches, e.g. neural networks. We show how Genetic Programming improved upon a manually crafted race car driver (proportional controller). The open race car simulator TORCS was used to evaluate the virtual drivers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal strategy selection of non-player character on real time strategy game using a speciated evolutionary algorithm Formal analysis and algorithms for extracting coordinate systems of games Evolving driving controllers using Genetic Programming CHANCEPROBCUT: Forward pruning in chance nodes Evolving coordinated spatial tactics for autonomous entities using influence maps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1