三种软故障模型对混合并行异步迭代方法的影响

Evan Coleman, Erik J. Jensen, M. Sosonkina
{"title":"三种软故障模型对混合并行异步迭代方法的影响","authors":"Evan Coleman, Erik J. Jensen, M. Sosonkina","doi":"10.1109/CAHPC.2018.8645942","DOIUrl":null,"url":null,"abstract":"This study seeks to understand the soft error vulnerability of asynchronous iterative methods, with a focus on stationary iterative solvers such as Jacobi. The implementations make use of hybrid parallelism where the computational work is distributed over multiple nodes using MPI and parallelized on each node using openMP. A series of experiments is conducted to measure the impact of an undetected soft fault on an asynchronous iterative method, and to compare and contrast several techniques for simulating the occurrence of a fault and then recovering from the effects of the faults. The data shows that the two numerical soft-fault models tested here more consistently than a “bit-flip” model produce bad enough behavior to test a variety of recovery strategies, such as those based on partial checkpointing.","PeriodicalId":307747,"journal":{"name":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Impacts of Three Soft-Fault Models on Hybrid Parallel Asynchronous Iterative Methods\",\"authors\":\"Evan Coleman, Erik J. Jensen, M. Sosonkina\",\"doi\":\"10.1109/CAHPC.2018.8645942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study seeks to understand the soft error vulnerability of asynchronous iterative methods, with a focus on stationary iterative solvers such as Jacobi. The implementations make use of hybrid parallelism where the computational work is distributed over multiple nodes using MPI and parallelized on each node using openMP. A series of experiments is conducted to measure the impact of an undetected soft fault on an asynchronous iterative method, and to compare and contrast several techniques for simulating the occurrence of a fault and then recovering from the effects of the faults. The data shows that the two numerical soft-fault models tested here more consistently than a “bit-flip” model produce bad enough behavior to test a variety of recovery strategies, such as those based on partial checkpointing.\",\"PeriodicalId\":307747,\"journal\":{\"name\":\"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAHPC.2018.8645942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAHPC.2018.8645942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本研究旨在了解异步迭代方法的软错误脆弱性,重点关注Jacobi等平稳迭代求解器。这些实现使用混合并行,其中计算工作使用MPI分布在多个节点上,并使用openMP在每个节点上并行化。进行了一系列实验,以测量未检测到的软故障对异步迭代方法的影响,并对几种模拟故障发生并从故障影响中恢复的技术进行了比较和对比。数据表明,这里测试的两种数值软断层模型比“位翻转”模型更一致,产生的不良行为足以测试各种恢复策略,例如基于部分检查点的恢复策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impacts of Three Soft-Fault Models on Hybrid Parallel Asynchronous Iterative Methods
This study seeks to understand the soft error vulnerability of asynchronous iterative methods, with a focus on stationary iterative solvers such as Jacobi. The implementations make use of hybrid parallelism where the computational work is distributed over multiple nodes using MPI and parallelized on each node using openMP. A series of experiments is conducted to measure the impact of an undetected soft fault on an asynchronous iterative method, and to compare and contrast several techniques for simulating the occurrence of a fault and then recovering from the effects of the faults. The data shows that the two numerical soft-fault models tested here more consistently than a “bit-flip” model produce bad enough behavior to test a variety of recovery strategies, such as those based on partial checkpointing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Time Predictability Features of ARM Big. LITTLE Multicores Impacts of Three Soft-Fault Models on Hybrid Parallel Asynchronous Iterative Methods Predicting the Performance Impact of Increasing Memory Bandwidth for Scientific Workflows From Java to FPGA: An Experience with the Intel HARP System Copyright
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1