{"title":"具有隐藏节点的IEEE 802.11无线网络性能建模与分析","authors":"M. Lee, G. Hwang, Sumit Roy","doi":"10.1145/2507924.2507947","DOIUrl":null,"url":null,"abstract":"This work seeks to develop an analytical model for the per-node throughput analysis of IEEE 802.11 WLAN networks with hidden nodes by extending the Bianchi's model. With the analytic model we derive the per-node throughput of each node and quantify the impact of hidden nodes on per-node throughput. Through our analysis, we find that nodes having more hidden nodes are likely to have worse throughput performance than nodes having less hidden nodes, so resulting in unfairness in per-node throughput. We next propose a new algorithm, called the fake collision algorithm, to solve the unfairness due to hidden nodes. The proposed fake collision algorithm allows nodes with poor throughput to acquire more transmission opportunities by slightly modifying the Binary Exponential Backoff algorithm of the IEEE 802.11 Distributed Coordination Function. To this end, the fake collision algorithm uses a new control parameter called the fake collision probability which can be obtained from a computation algorithm that we develop based on our analytic model. We show that the fairness in per-node throughput can be achieved with the fake collision probability for each node through simulation.","PeriodicalId":445138,"journal":{"name":"Proceedings of the 16th ACM international conference on Modeling, analysis & simulation of wireless and mobile systems","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Performance modeling and analysis of IEEE 802.11 wireless networks with hidden nodes\",\"authors\":\"M. Lee, G. Hwang, Sumit Roy\",\"doi\":\"10.1145/2507924.2507947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work seeks to develop an analytical model for the per-node throughput analysis of IEEE 802.11 WLAN networks with hidden nodes by extending the Bianchi's model. With the analytic model we derive the per-node throughput of each node and quantify the impact of hidden nodes on per-node throughput. Through our analysis, we find that nodes having more hidden nodes are likely to have worse throughput performance than nodes having less hidden nodes, so resulting in unfairness in per-node throughput. We next propose a new algorithm, called the fake collision algorithm, to solve the unfairness due to hidden nodes. The proposed fake collision algorithm allows nodes with poor throughput to acquire more transmission opportunities by slightly modifying the Binary Exponential Backoff algorithm of the IEEE 802.11 Distributed Coordination Function. To this end, the fake collision algorithm uses a new control parameter called the fake collision probability which can be obtained from a computation algorithm that we develop based on our analytic model. We show that the fairness in per-node throughput can be achieved with the fake collision probability for each node through simulation.\",\"PeriodicalId\":445138,\"journal\":{\"name\":\"Proceedings of the 16th ACM international conference on Modeling, analysis & simulation of wireless and mobile systems\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM international conference on Modeling, analysis & simulation of wireless and mobile systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2507924.2507947\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM international conference on Modeling, analysis & simulation of wireless and mobile systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2507924.2507947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance modeling and analysis of IEEE 802.11 wireless networks with hidden nodes
This work seeks to develop an analytical model for the per-node throughput analysis of IEEE 802.11 WLAN networks with hidden nodes by extending the Bianchi's model. With the analytic model we derive the per-node throughput of each node and quantify the impact of hidden nodes on per-node throughput. Through our analysis, we find that nodes having more hidden nodes are likely to have worse throughput performance than nodes having less hidden nodes, so resulting in unfairness in per-node throughput. We next propose a new algorithm, called the fake collision algorithm, to solve the unfairness due to hidden nodes. The proposed fake collision algorithm allows nodes with poor throughput to acquire more transmission opportunities by slightly modifying the Binary Exponential Backoff algorithm of the IEEE 802.11 Distributed Coordination Function. To this end, the fake collision algorithm uses a new control parameter called the fake collision probability which can be obtained from a computation algorithm that we develop based on our analytic model. We show that the fairness in per-node throughput can be achieved with the fake collision probability for each node through simulation.