半导体基等离子体超材料的比较研究

Gururaj V. Naik , Alexandra Boltasseva
{"title":"半导体基等离子体超材料的比较研究","authors":"Gururaj V. Naik ,&nbsp;Alexandra Boltasseva","doi":"10.1016/j.metmat.2010.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>Recent metamaterial (MM) research faces several problems when using metal-based plasmonic components as building blocks for MMs. The use of conventional metals for MMs is limited by several factors: metals such as gold and silver have high losses in the visible and near-infrared (NIR) ranges and very large negative real permittivity values, and in addition, their optical properties cannot be tuned. These issues that put severe constraints on the device applications of MMs could be overcome if semiconductors are used as plasmonic materials instead of metals. Heavily doped, wide bandgap oxide semiconductors could exhibit both a small negative real permittivity and relatively small losses in the NIR. Heavily doped oxides of zinc and indium were already reported to be good, low loss alternatives to metals in the NIR range. Here, we consider these transparent conducting oxides (TCOs) as alternative plasmonic materials for many specific applications ranging from surface-plasmon-polariton waveguides to MMs with hyperbolic dispersion and epsilon-near-zero (ENZ) materials. We show that TCOs outperform conventional metals for ENZ and other MM-applications in the NIR.</p></div>","PeriodicalId":100920,"journal":{"name":"Metamaterials","volume":"5 1","pages":"Pages 1-7"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.metmat.2010.11.001","citationCount":"103","resultStr":"{\"title\":\"A comparative study of semiconductor-based plasmonic metamaterials\",\"authors\":\"Gururaj V. Naik ,&nbsp;Alexandra Boltasseva\",\"doi\":\"10.1016/j.metmat.2010.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent metamaterial (MM) research faces several problems when using metal-based plasmonic components as building blocks for MMs. The use of conventional metals for MMs is limited by several factors: metals such as gold and silver have high losses in the visible and near-infrared (NIR) ranges and very large negative real permittivity values, and in addition, their optical properties cannot be tuned. These issues that put severe constraints on the device applications of MMs could be overcome if semiconductors are used as plasmonic materials instead of metals. Heavily doped, wide bandgap oxide semiconductors could exhibit both a small negative real permittivity and relatively small losses in the NIR. Heavily doped oxides of zinc and indium were already reported to be good, low loss alternatives to metals in the NIR range. Here, we consider these transparent conducting oxides (TCOs) as alternative plasmonic materials for many specific applications ranging from surface-plasmon-polariton waveguides to MMs with hyperbolic dispersion and epsilon-near-zero (ENZ) materials. We show that TCOs outperform conventional metals for ENZ and other MM-applications in the NIR.</p></div>\",\"PeriodicalId\":100920,\"journal\":{\"name\":\"Metamaterials\",\"volume\":\"5 1\",\"pages\":\"Pages 1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.metmat.2010.11.001\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metamaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1873198810000538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metamaterials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873198810000538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

摘要

最近的超材料(MM)研究在使用金属基等离子体元件作为MM的构建块时面临着几个问题。传统金属在mm中的使用受到几个因素的限制:金和银等金属在可见光和近红外(NIR)范围内具有高损耗和非常大的负实际介电常数值,此外,它们的光学特性无法调谐。如果用半导体代替金属作为等离子体材料,这些严重限制mm器件应用的问题可以被克服。高掺杂、宽禁带的氧化物半导体在近红外光谱中表现出较小的负实际介电常数和相对较小的损耗。据报道,在近红外光谱范围内,锌和铟的重掺杂氧化物是良好的、低损耗的金属替代品。在这里,我们考虑这些透明导电氧化物(tco)作为许多特定应用的替代等离子体材料,从表面等离子体极化子波导到具有双曲色散的mm和epsilon-近零(ENZ)材料。我们表明,tco在ENZ和其他近红外mm应用中优于传统金属。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparative study of semiconductor-based plasmonic metamaterials

Recent metamaterial (MM) research faces several problems when using metal-based plasmonic components as building blocks for MMs. The use of conventional metals for MMs is limited by several factors: metals such as gold and silver have high losses in the visible and near-infrared (NIR) ranges and very large negative real permittivity values, and in addition, their optical properties cannot be tuned. These issues that put severe constraints on the device applications of MMs could be overcome if semiconductors are used as plasmonic materials instead of metals. Heavily doped, wide bandgap oxide semiconductors could exhibit both a small negative real permittivity and relatively small losses in the NIR. Heavily doped oxides of zinc and indium were already reported to be good, low loss alternatives to metals in the NIR range. Here, we consider these transparent conducting oxides (TCOs) as alternative plasmonic materials for many specific applications ranging from surface-plasmon-polariton waveguides to MMs with hyperbolic dispersion and epsilon-near-zero (ENZ) materials. We show that TCOs outperform conventional metals for ENZ and other MM-applications in the NIR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Principle of Miniaturization of Microwave Patch Antennas Engineered Metamaterials through the Material-by-Design Approach Asymmetric Split-H Based Metasurfaces for Identification of Organic Molecules Review of Effective Medium Theory and Parametric Retrieval Techniques of Metamaterials Progress in Metamaterial and Metasurface Technology and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1