互联网负载均衡路径的延迟不平衡:以云为中心的观点

Yibo Pi, S. Jamin, P. Danzig, Feng Qian
{"title":"互联网负载均衡路径的延迟不平衡:以云为中心的观点","authors":"Yibo Pi, S. Jamin, P. Danzig, Feng Qian","doi":"10.1145/3393691.3394196","DOIUrl":null,"url":null,"abstract":"Load balancers choose among load-balanced paths to distribute traffic as if it makes no difference using one path or another. This work shows that the latency difference between load-balanced paths (called latency imbalance), previously deemed insignificant, is now prevalent from the perspective of the cloud and affects various latency-sensitive applications. In this work, we present the first large-scale measurement study of latency imbalance from a cloud-centric view. Using public cloud around the globe, we measure latency imbalance both between data centers (DCs) in the cloud and from the cloud to the public Internet. Our key findings include that 1) Amazon's and Alibaba's clouds together have latency difference between load-balanced paths larger than 20ms to 21% of public IPv4 addresses; 2) Google's secret in having lower latency imbalance than other clouds is to use its own well-balanced private WANs to transit traffic close to the destinations and that 3) latency imbalance is also prevalent between DCs in the cloud, where 8 pairs of DCs are found to have load-balanced paths with latency difference larger than 40ms. We further evaluate the impact of latency imbalance on three applications (i.e., NTP, delay-based geolocation and VoIP) and propose potential solutions to improve application performance. Our experiments show that all three applications can benefit from considering latency imbalance, where the accuracy of delay-based geolocation can be greatly improved by simply changing how ping measures the minimum path latency.","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Latency Imbalance Among Internet Load-Balanced Paths: A Cloud-Centric View\",\"authors\":\"Yibo Pi, S. Jamin, P. Danzig, Feng Qian\",\"doi\":\"10.1145/3393691.3394196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Load balancers choose among load-balanced paths to distribute traffic as if it makes no difference using one path or another. This work shows that the latency difference between load-balanced paths (called latency imbalance), previously deemed insignificant, is now prevalent from the perspective of the cloud and affects various latency-sensitive applications. In this work, we present the first large-scale measurement study of latency imbalance from a cloud-centric view. Using public cloud around the globe, we measure latency imbalance both between data centers (DCs) in the cloud and from the cloud to the public Internet. Our key findings include that 1) Amazon's and Alibaba's clouds together have latency difference between load-balanced paths larger than 20ms to 21% of public IPv4 addresses; 2) Google's secret in having lower latency imbalance than other clouds is to use its own well-balanced private WANs to transit traffic close to the destinations and that 3) latency imbalance is also prevalent between DCs in the cloud, where 8 pairs of DCs are found to have load-balanced paths with latency difference larger than 40ms. We further evaluate the impact of latency imbalance on three applications (i.e., NTP, delay-based geolocation and VoIP) and propose potential solutions to improve application performance. Our experiments show that all three applications can benefit from considering latency imbalance, where the accuracy of delay-based geolocation can be greatly improved by simply changing how ping measures the minimum path latency.\",\"PeriodicalId\":188517,\"journal\":{\"name\":\"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3393691.3394196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3393691.3394196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

负载平衡器选择负载平衡的路径来分配流量,就好像使用一条路径或另一条路径没有区别一样。这项工作表明,负载平衡路径之间的延迟差异(称为延迟不平衡),以前被认为是微不足道的,现在从云的角度来看是普遍的,并影响到各种延迟敏感的应用程序。在这项工作中,我们首次从云中心的角度对延迟不平衡进行了大规模测量研究。使用全球范围内的公共云,我们测量了云中的数据中心(dc)之间以及从云到公共互联网之间的延迟不平衡。我们的主要发现包括:1)亚马逊和阿里巴巴的云在负载均衡路径和21%的公共IPv4地址之间的延迟差异大于20毫秒;2)谷歌比其他云具有更低延迟不平衡的秘诀是使用自己的良好平衡的私有wan来传输靠近目的地的流量,3)延迟不平衡在云中的数据中心之间也很普遍,其中发现8对数据中心具有延迟差异大于40ms的负载平衡路径。我们进一步评估了延迟不平衡对三个应用程序(即NTP,基于延迟的地理定位和VoIP)的影响,并提出了提高应用程序性能的潜在解决方案。我们的实验表明,这三个应用程序都可以从考虑延迟不平衡中获益,通过简单地改变ping测量最小路径延迟的方式,可以大大提高基于延迟的地理定位的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Latency Imbalance Among Internet Load-Balanced Paths: A Cloud-Centric View
Load balancers choose among load-balanced paths to distribute traffic as if it makes no difference using one path or another. This work shows that the latency difference between load-balanced paths (called latency imbalance), previously deemed insignificant, is now prevalent from the perspective of the cloud and affects various latency-sensitive applications. In this work, we present the first large-scale measurement study of latency imbalance from a cloud-centric view. Using public cloud around the globe, we measure latency imbalance both between data centers (DCs) in the cloud and from the cloud to the public Internet. Our key findings include that 1) Amazon's and Alibaba's clouds together have latency difference between load-balanced paths larger than 20ms to 21% of public IPv4 addresses; 2) Google's secret in having lower latency imbalance than other clouds is to use its own well-balanced private WANs to transit traffic close to the destinations and that 3) latency imbalance is also prevalent between DCs in the cloud, where 8 pairs of DCs are found to have load-balanced paths with latency difference larger than 40ms. We further evaluate the impact of latency imbalance on three applications (i.e., NTP, delay-based geolocation and VoIP) and propose potential solutions to improve application performance. Our experiments show that all three applications can benefit from considering latency imbalance, where the accuracy of delay-based geolocation can be greatly improved by simply changing how ping measures the minimum path latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Latency Imbalance Among Internet Load-Balanced Paths: A Cloud-Centric View Fundamental Limits of Approximate Gradient Coding Staleness Control for Edge Data Analytics vrfinder: Finding Outbound Addresses in Traceroute The Great Internet TCP Congestion Control Census
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1