使用机器学习对传入数据流量进行用户移动性的服务器端区分

Hosam Alamleh, A. A. AlQahtani, Baker Al Smadi
{"title":"使用机器学习对传入数据流量进行用户移动性的服务器端区分","authors":"Hosam Alamleh, A. A. AlQahtani, Baker Al Smadi","doi":"10.1109/iemtronics55184.2022.9795735","DOIUrl":null,"url":null,"abstract":"During two decades, there have been a revolution in the field of digital communication and internet access. Today, it became possible for users to access the internet while on the move through an infrastructure of high-speed mobile broadband networks. Technologies such as LTE and 5G became essential. Mobile broadband net-works allow mobility; connection reliability drops during movement. Thus, some failure intolerant processes, such as system updates, necessitates the utilization of a reliable connection. This paper introduces a model that predicts whether the user is mobile or stationery. This is done based on the traffic patterns at the server-side. Distinct network technologies entails distinct nature of traffic patterns. In this paper, machine learning is utilized at the server-side to allow differentiating between data transmitted by a stationary user and data transmitted by a mobile user at the server-side. Supervised training is utilized to train the model. Then, the model was tested and prediction accuracy of this model was 92.6 percent. Finally, the proposed system is a novel work and the first of its kind since it is the first to attempt to predict mobile network user’s mobility at the server-side by utilizing packets’ arrival patterns. The proposed system can be applied at mobile apps and allow them to collect data about the apps users mobility while using this service without needing to access the GPS. Also, it can be used network management and public safety.","PeriodicalId":442879,"journal":{"name":"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Server-Side Distinction of User Mobility Using Machine Learning on Incoming Data Traffic\",\"authors\":\"Hosam Alamleh, A. A. AlQahtani, Baker Al Smadi\",\"doi\":\"10.1109/iemtronics55184.2022.9795735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During two decades, there have been a revolution in the field of digital communication and internet access. Today, it became possible for users to access the internet while on the move through an infrastructure of high-speed mobile broadband networks. Technologies such as LTE and 5G became essential. Mobile broadband net-works allow mobility; connection reliability drops during movement. Thus, some failure intolerant processes, such as system updates, necessitates the utilization of a reliable connection. This paper introduces a model that predicts whether the user is mobile or stationery. This is done based on the traffic patterns at the server-side. Distinct network technologies entails distinct nature of traffic patterns. In this paper, machine learning is utilized at the server-side to allow differentiating between data transmitted by a stationary user and data transmitted by a mobile user at the server-side. Supervised training is utilized to train the model. Then, the model was tested and prediction accuracy of this model was 92.6 percent. Finally, the proposed system is a novel work and the first of its kind since it is the first to attempt to predict mobile network user’s mobility at the server-side by utilizing packets’ arrival patterns. The proposed system can be applied at mobile apps and allow them to collect data about the apps users mobility while using this service without needing to access the GPS. Also, it can be used network management and public safety.\",\"PeriodicalId\":442879,\"journal\":{\"name\":\"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iemtronics55184.2022.9795735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iemtronics55184.2022.9795735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的二十年里,数字通信和互联网接入领域发生了一场革命。今天,用户可以通过高速移动宽带网络的基础设施在移动中访问互联网。LTE和5G等技术变得至关重要。移动宽带网络允许移动性;连接可靠性在移动过程中下降。因此,一些不能容忍故障的进程(如系统更新)需要使用可靠的连接。本文介绍了一个预测用户是移动用户还是文具用户的模型。这是基于服务器端的流量模式完成的。不同的网络技术需要不同的流量模式。在本文中,在服务器端利用机器学习来区分固定用户传输的数据和移动用户在服务器端传输的数据。利用监督训练对模型进行训练。然后对模型进行了检验,模型的预测准确率为92.6%。最后,所提出的系统是一项新颖的工作,也是同类中的第一个,因为它是第一个试图通过利用数据包的到达模式来预测移动网络用户在服务器端的移动性的系统。所提出的系统可以应用于移动应用程序,并允许他们收集有关应用程序用户移动的数据,而无需访问GPS,而使用这项服务。还可用于网络管理和公共安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Server-Side Distinction of User Mobility Using Machine Learning on Incoming Data Traffic
During two decades, there have been a revolution in the field of digital communication and internet access. Today, it became possible for users to access the internet while on the move through an infrastructure of high-speed mobile broadband networks. Technologies such as LTE and 5G became essential. Mobile broadband net-works allow mobility; connection reliability drops during movement. Thus, some failure intolerant processes, such as system updates, necessitates the utilization of a reliable connection. This paper introduces a model that predicts whether the user is mobile or stationery. This is done based on the traffic patterns at the server-side. Distinct network technologies entails distinct nature of traffic patterns. In this paper, machine learning is utilized at the server-side to allow differentiating between data transmitted by a stationary user and data transmitted by a mobile user at the server-side. Supervised training is utilized to train the model. Then, the model was tested and prediction accuracy of this model was 92.6 percent. Finally, the proposed system is a novel work and the first of its kind since it is the first to attempt to predict mobile network user’s mobility at the server-side by utilizing packets’ arrival patterns. The proposed system can be applied at mobile apps and allow them to collect data about the apps users mobility while using this service without needing to access the GPS. Also, it can be used network management and public safety.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Reflecting Surfaces in UAV-Assisted 6G Networks: An Approach for Enhanced Propagation and Spectral Characteristics Bimetals (Au-Pd, Au-Pt) loaded WO3 hybridized graphene oxide FET sensors for selective detection of acetone Using UML to Describe the Development of Software Products Using an Object Approach A Machine Learning Approach for the Early Detection of Dementia VLSI Implementation of a Real-time Modified Decision-based Algorithm for Impulse Noise Removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1