利用线性判别分析和数据挖掘方法识别电子商务异常

Zijiang Yang, Shouxin Cao, Bo Yan
{"title":"利用线性判别分析和数据挖掘方法识别电子商务异常","authors":"Zijiang Yang, Shouxin Cao, Bo Yan","doi":"10.1109/ICNC.2011.6022591","DOIUrl":null,"url":null,"abstract":"Electronic commerce has been rather pervasive in our life today. However, the damage is equally pervasive. For Business to Consumer type of E-commerce, various types of E-commerce anomaly usually incurs loss of revenue, reduced customer satisfaction and compromised business confidentiality. This paper proposes linear discriminant analysis and data mining approaches to identify the E-commerce anomaly. The data mining approaches yield superior performance. However, the unbalanced data make the data mining approaches dominated by the data of the majority class. LDA is introduced to deal with the unbalanced data set. The results indicate that our proposed methods can identify the E-commerce anomaly precisely. The practice insights from the results are also given.","PeriodicalId":299503,"journal":{"name":"2011 Seventh International Conference on Natural Computation","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using linear discriminant analysis and data mining approaches to identify E-commerce anomaly\",\"authors\":\"Zijiang Yang, Shouxin Cao, Bo Yan\",\"doi\":\"10.1109/ICNC.2011.6022591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic commerce has been rather pervasive in our life today. However, the damage is equally pervasive. For Business to Consumer type of E-commerce, various types of E-commerce anomaly usually incurs loss of revenue, reduced customer satisfaction and compromised business confidentiality. This paper proposes linear discriminant analysis and data mining approaches to identify the E-commerce anomaly. The data mining approaches yield superior performance. However, the unbalanced data make the data mining approaches dominated by the data of the majority class. LDA is introduced to deal with the unbalanced data set. The results indicate that our proposed methods can identify the E-commerce anomaly precisely. The practice insights from the results are also given.\",\"PeriodicalId\":299503,\"journal\":{\"name\":\"2011 Seventh International Conference on Natural Computation\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Seventh International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2011.6022591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Seventh International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2011.6022591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电子商务在我们今天的生活中已经相当普遍了。然而,损害同样普遍。对于b2c类型的电子商务,各种类型的电子商务异常通常会导致收入损失、客户满意度降低和业务机密性受损。本文提出了线性判别分析和数据挖掘方法来识别电子商务异常。数据挖掘方法产生了优越的性能。然而,数据的不平衡使得数据挖掘方法被大多数类的数据所主导。引入LDA来处理不平衡数据集。结果表明,本文提出的方法能够准确地识别电子商务异常。并从结果中给出了实践启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using linear discriminant analysis and data mining approaches to identify E-commerce anomaly
Electronic commerce has been rather pervasive in our life today. However, the damage is equally pervasive. For Business to Consumer type of E-commerce, various types of E-commerce anomaly usually incurs loss of revenue, reduced customer satisfaction and compromised business confidentiality. This paper proposes linear discriminant analysis and data mining approaches to identify the E-commerce anomaly. The data mining approaches yield superior performance. However, the unbalanced data make the data mining approaches dominated by the data of the majority class. LDA is introduced to deal with the unbalanced data set. The results indicate that our proposed methods can identify the E-commerce anomaly precisely. The practice insights from the results are also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Notice of RetractionResearch on semi-active control of high-speed railway vehicle based on neural network-PID control Bethe approximation to inverse halftoning using multiple halftone images Hybrid crossover operator based on pattern MVN_CNN and UBN_CNN for endocardial edge detection A novel GPLS-GP algorithm and its application to air temperature prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1