具有非相同零售商的两层(R, Q)库存系统的启发式优化算法

Mohammad H. Al-Rifai, M. Rossetti, A. Sheikhzadeh
{"title":"具有非相同零售商的两层(R, Q)库存系统的启发式优化算法","authors":"Mohammad H. Al-Rifai, M. Rossetti, A. Sheikhzadeh","doi":"10.1504/IJIR.2016.10001214","DOIUrl":null,"url":null,"abstract":"This paper describes an optimisation algorithm that minimises the total inventory investment of a one warehouse and an m non-identical retailer's inventory system using reorder point and order quantity (R, Q) policies. The inventory system is subject to constraints on the average ordering frequency and number of backorders. The system is decomposed by echelon and location, and analytical expressions are derived for the inventory policy parameters. Sets of computational experiments illustrate the effectiveness of the heuristic over a wide range of problem instances. Experimental results indicate that the heuristic optimisation algorithm is an effective procedure for optimising the sampled inventory systems regarding both the quality of the solutions and the computational times. This research provides approximations and a heuristic optimisation procedure for a two-echelon inventory system for the non-identical retailer's case.","PeriodicalId":113309,"journal":{"name":"International Journal of Inventory Research","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A heuristic optimisation algorithm for two-echelon (R, Q) inventory systems with non-identical retailers\",\"authors\":\"Mohammad H. Al-Rifai, M. Rossetti, A. Sheikhzadeh\",\"doi\":\"10.1504/IJIR.2016.10001214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an optimisation algorithm that minimises the total inventory investment of a one warehouse and an m non-identical retailer's inventory system using reorder point and order quantity (R, Q) policies. The inventory system is subject to constraints on the average ordering frequency and number of backorders. The system is decomposed by echelon and location, and analytical expressions are derived for the inventory policy parameters. Sets of computational experiments illustrate the effectiveness of the heuristic over a wide range of problem instances. Experimental results indicate that the heuristic optimisation algorithm is an effective procedure for optimising the sampled inventory systems regarding both the quality of the solutions and the computational times. This research provides approximations and a heuristic optimisation procedure for a two-echelon inventory system for the non-identical retailer's case.\",\"PeriodicalId\":113309,\"journal\":{\"name\":\"International Journal of Inventory Research\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Inventory Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJIR.2016.10001214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Inventory Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJIR.2016.10001214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文描述了一种利用再订货点和订单数量(R, Q)策略最小化一个仓库和m个非相同零售商库存系统总库存投资的优化算法。库存系统受到平均订购频率和缺货数量的限制。对系统进行了阶梯式和位置分解,导出了库存策略参数的解析表达式。一系列的计算实验说明了启发式算法在广泛的问题实例上的有效性。实验结果表明,启发式优化算法在求解质量和计算时间方面都是一种有效的优化抽样库存系统的方法。本文针对不同零售商的情况,给出了两梯次库存系统的近似和启发式优化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A heuristic optimisation algorithm for two-echelon (R, Q) inventory systems with non-identical retailers
This paper describes an optimisation algorithm that minimises the total inventory investment of a one warehouse and an m non-identical retailer's inventory system using reorder point and order quantity (R, Q) policies. The inventory system is subject to constraints on the average ordering frequency and number of backorders. The system is decomposed by echelon and location, and analytical expressions are derived for the inventory policy parameters. Sets of computational experiments illustrate the effectiveness of the heuristic over a wide range of problem instances. Experimental results indicate that the heuristic optimisation algorithm is an effective procedure for optimising the sampled inventory systems regarding both the quality of the solutions and the computational times. This research provides approximations and a heuristic optimisation procedure for a two-echelon inventory system for the non-identical retailer's case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Production Stock Model for a Distributed Deteriorating Product with both Price and Time Dependent Demand Rate under Inflation and Late Paying Allowing Shortages Innovative approach of stock-linked demand dependent production inventory model with decline deterioration Location pricing to effectively reduce inventory repositioning: the car rental industry Analysis of the robustness of a single-tier pipeline inventory model A multi-item inventory model for small business - a perspective from India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1