基于学习的网络物理系统漏洞分析

Amir Khazraei, S. Hallyburton, Qitong Gao, Yu Wang, M. Pajic
{"title":"基于学习的网络物理系统漏洞分析","authors":"Amir Khazraei, S. Hallyburton, Qitong Gao, Yu Wang, M. Pajic","doi":"10.1109/iccps54341.2022.00030","DOIUrl":null,"url":null,"abstract":"This work focuses on the use of deep learning for vulnerability analysis of cyber-physical systems (CPS). Specifically, we consider a control architecture widely used in CPS, where the low-level control is based on a feedback controller and an observer (e.g., the extended Kalman filter (EKF)), while also employing an anomaly detector. To facilitate analyzing the impact potential sensing attacks could have on systems with general nonlinear dynamics, we develop learning-enabled attack generators capable of designing stealthy attacks that maximally degrade system operation. We show how such problem can be cast within a learning-based grey-box framework where only parts of the runtime information are known to the attacker. We then introduce two methods for generating effective stealthy attacks, based on feed-forward neural networks (FNN) and recurrent neural networks (RNN). Both types of attack-generator models are trained offline, using a cost function that combines the attack impact on the estimation error (and thus control) and the residual signal used for anomaly detection; this enables the trained models to recursively generate effective yet stealthy sensor attacks in real-time while requiring different levels of system information at runtime. The effectiveness of the proposed methods is demonstrated on several case studies with varying levels of complexity and nonlinearity: inverted pendulum, autonomous driving vehicles (ADV), and unmanned areal vehicles (UAVs).","PeriodicalId":340078,"journal":{"name":"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Learning-Based Vulnerability Analysis of Cyber-Physical Systems\",\"authors\":\"Amir Khazraei, S. Hallyburton, Qitong Gao, Yu Wang, M. Pajic\",\"doi\":\"10.1109/iccps54341.2022.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work focuses on the use of deep learning for vulnerability analysis of cyber-physical systems (CPS). Specifically, we consider a control architecture widely used in CPS, where the low-level control is based on a feedback controller and an observer (e.g., the extended Kalman filter (EKF)), while also employing an anomaly detector. To facilitate analyzing the impact potential sensing attacks could have on systems with general nonlinear dynamics, we develop learning-enabled attack generators capable of designing stealthy attacks that maximally degrade system operation. We show how such problem can be cast within a learning-based grey-box framework where only parts of the runtime information are known to the attacker. We then introduce two methods for generating effective stealthy attacks, based on feed-forward neural networks (FNN) and recurrent neural networks (RNN). Both types of attack-generator models are trained offline, using a cost function that combines the attack impact on the estimation error (and thus control) and the residual signal used for anomaly detection; this enables the trained models to recursively generate effective yet stealthy sensor attacks in real-time while requiring different levels of system information at runtime. The effectiveness of the proposed methods is demonstrated on several case studies with varying levels of complexity and nonlinearity: inverted pendulum, autonomous driving vehicles (ADV), and unmanned areal vehicles (UAVs).\",\"PeriodicalId\":340078,\"journal\":{\"name\":\"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccps54341.2022.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccps54341.2022.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

这项工作的重点是使用深度学习进行网络物理系统(CPS)的漏洞分析。具体来说,我们考虑了在CPS中广泛使用的控制体系结构,其中低级控制基于反馈控制器和观测器(例如,扩展卡尔曼滤波器(EKF)),同时还采用异常检测器。为了便于分析潜在的传感攻击可能对具有一般非线性动力学的系统产生的影响,我们开发了能够设计最大限度地降低系统运行的隐形攻击的学习攻击生成器。我们展示了如何在一个基于学习的灰盒框架中处理这样的问题,在这个框架中,攻击者只知道部分运行时信息。然后,我们介绍了基于前馈神经网络(FNN)和递归神经网络(RNN)的两种生成有效隐形攻击的方法。这两种类型的攻击生成器模型都是离线训练的,使用的代价函数结合了攻击对估计误差的影响(从而控制)和用于异常检测的剩余信号;这使得经过训练的模型能够递归地实时生成有效而隐蔽的传感器攻击,同时在运行时需要不同级别的系统信息。所提出方法的有效性在几个不同复杂程度和非线性的案例研究中得到了证明:倒立摆、自动驾驶车辆(ADV)和无人驾驶区域车辆(uav)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning-Based Vulnerability Analysis of Cyber-Physical Systems
This work focuses on the use of deep learning for vulnerability analysis of cyber-physical systems (CPS). Specifically, we consider a control architecture widely used in CPS, where the low-level control is based on a feedback controller and an observer (e.g., the extended Kalman filter (EKF)), while also employing an anomaly detector. To facilitate analyzing the impact potential sensing attacks could have on systems with general nonlinear dynamics, we develop learning-enabled attack generators capable of designing stealthy attacks that maximally degrade system operation. We show how such problem can be cast within a learning-based grey-box framework where only parts of the runtime information are known to the attacker. We then introduce two methods for generating effective stealthy attacks, based on feed-forward neural networks (FNN) and recurrent neural networks (RNN). Both types of attack-generator models are trained offline, using a cost function that combines the attack impact on the estimation error (and thus control) and the residual signal used for anomaly detection; this enables the trained models to recursively generate effective yet stealthy sensor attacks in real-time while requiring different levels of system information at runtime. The effectiveness of the proposed methods is demonstrated on several case studies with varying levels of complexity and nonlinearity: inverted pendulum, autonomous driving vehicles (ADV), and unmanned areal vehicles (UAVs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poster Abstract: Scheduling Dynamic Software Updates in Safety-critical Embedded Systems - the Case of Aerial Drones Multi-fidelity Bayesian Optimization for Co-design of Resilient Cyber-Physical Systems Decentralized Multi-agent Coordination under MITL Tasks and Communication Constraints Safety from Fast, In-the-Loop Reachability with Application to UAVs Blind Spots of Objective Measures: Exploiting Imperceivable Errors for Immersive Tactile Internet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1