基于主erp和LDA的P300拼心术改进方法

Ali Mobaien, Negar Kheirandish, R. Boostani
{"title":"基于主erp和LDA的P300拼心术改进方法","authors":"Ali Mobaien, Negar Kheirandish, R. Boostani","doi":"10.1109/ICSPIS54653.2021.9729346","DOIUrl":null,"url":null,"abstract":"Visual P300 mind speller is a brain-computer interface allowing an individual to type through his mind. To this aim, the subject sits in front of a screen full of letters, and when his desired one flashes, there will be a P300 response (a positive deflection nearly 300ms after stimulus) in his brain signals. Due to the very low signal-to-noise (SNR) of the P300 in the background activities of the brain, detection of this component is challenging. Principal ERP reduction (pERP-RED) is a newly developed method that effectively extracts the underlying templates of event-related potentials (ERPs) by employing a three-step spatial filtering procedure. In this research, we investigate the performance of pERP-RED in conjunction with linear discriminant analysis (LDA) to classify P300 data. The proposed method is examined on a real P300 dataset and compared to the state-of-the-art LDA and support vector machines. The results demonstrate that the proposed method achieves higher classification accuracy in low SNRs and low numbers of training data.","PeriodicalId":286966,"journal":{"name":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new approach based on principal ERPs and LDA to improve P300 mind spellers\",\"authors\":\"Ali Mobaien, Negar Kheirandish, R. Boostani\",\"doi\":\"10.1109/ICSPIS54653.2021.9729346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual P300 mind speller is a brain-computer interface allowing an individual to type through his mind. To this aim, the subject sits in front of a screen full of letters, and when his desired one flashes, there will be a P300 response (a positive deflection nearly 300ms after stimulus) in his brain signals. Due to the very low signal-to-noise (SNR) of the P300 in the background activities of the brain, detection of this component is challenging. Principal ERP reduction (pERP-RED) is a newly developed method that effectively extracts the underlying templates of event-related potentials (ERPs) by employing a three-step spatial filtering procedure. In this research, we investigate the performance of pERP-RED in conjunction with linear discriminant analysis (LDA) to classify P300 data. The proposed method is examined on a real P300 dataset and compared to the state-of-the-art LDA and support vector machines. The results demonstrate that the proposed method achieves higher classification accuracy in low SNRs and low numbers of training data.\",\"PeriodicalId\":286966,\"journal\":{\"name\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPIS54653.2021.9729346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS54653.2021.9729346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Visual P300心灵拼写器是一种脑机接口,允许个人通过他的思想打字。为了达到这个目的,受试者坐在满是字母的屏幕前,当他想要的字母闪现时,他的大脑信号就会产生P300反应(刺激后近300毫秒的正偏转)。由于大脑背景活动中P300的信噪比(SNR)非常低,因此检测该成分具有挑战性。主ERP约简(Principal ERP reduction, pERP-RED)是一种采用三步空间滤波方法有效提取事件相关电位潜在模板的新方法。在本研究中,我们研究了pERP-RED结合线性判别分析(LDA)对P300数据进行分类的性能。在一个真实的P300数据集上对所提出的方法进行了检验,并与最先进的LDA和支持向量机进行了比较。结果表明,该方法在低信噪比和低训练数据量的情况下具有较高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new approach based on principal ERPs and LDA to improve P300 mind spellers
Visual P300 mind speller is a brain-computer interface allowing an individual to type through his mind. To this aim, the subject sits in front of a screen full of letters, and when his desired one flashes, there will be a P300 response (a positive deflection nearly 300ms after stimulus) in his brain signals. Due to the very low signal-to-noise (SNR) of the P300 in the background activities of the brain, detection of this component is challenging. Principal ERP reduction (pERP-RED) is a newly developed method that effectively extracts the underlying templates of event-related potentials (ERPs) by employing a three-step spatial filtering procedure. In this research, we investigate the performance of pERP-RED in conjunction with linear discriminant analysis (LDA) to classify P300 data. The proposed method is examined on a real P300 dataset and compared to the state-of-the-art LDA and support vector machines. The results demonstrate that the proposed method achieves higher classification accuracy in low SNRs and low numbers of training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Fault Diagnosis of Rolling BearingBased on Deep Transfer Learning Using Time-Frequency Representation Wind Energy Potential Approximation with Various Metaheuristic Optimization Techniques Deployment Listening to Sounds of Silence for Audio replay attack detection Transcranial Magnetic Stimulation of Prefrontal Cortex Alters Functional Brain Network Architecture: Graph Theoretical Analysis Anomaly Detection and Resilience-Oriented Countermeasures against Cyberattacks in Smart Grids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1