图中的确定性和概率二分搜索

E. Emamjomeh-Zadeh, D. Kempe, Vikrant Singhal
{"title":"图中的确定性和概率二分搜索","authors":"E. Emamjomeh-Zadeh, D. Kempe, Vikrant Singhal","doi":"10.1145/2897518.2897656","DOIUrl":null,"url":null,"abstract":"We consider the following natural generalization of Binary Search: in a given undirected, positively weighted graph, one vertex is a target. The algorithm’s task is to identify the target by adaptively querying vertices. In response to querying a node q, the algorithm learns either that q is the target, or is given an edge out of q that lies on a shortest path from q to the target. We study this problem in a general noisy model in which each query independently receives a correct answer with probability p > 1/2 (a known constant), and an (adversarial) incorrect one with probability 1 − p. Our main positive result is that when p = 1 (i.e., all answers are correct), log2 n queries are always sufficient. For general p, we give an (almost information-theoretically optimal) algorithm that uses, in expectation, no more than (1 − δ) logn/1 − H(p) + o(logn) + O(log2 (1/δ)) queries, and identifies the target correctly with probability at leas 1 − δ. Here, H(p) = −(p logp + (1 − p) log(1 − p)) denotes the entropy. The first bound is achieved by the algorithm that iteratively queries a 1-median of the nodes not ruled out yet; the second bound by careful repeated invocations of a multiplicative weights algorithm. Even for p = 1, we show several hardness results for the problem of determining whether a target can be found using K queries. Our upper bound of log2 n implies a quasipolynomial-time algorithm for undirected connected graphs; we show that this is best-possible under the Strong Exponential Time Hypothesis (SETH). Furthermore, for directed graphs, or for undirected graphs with non-uniform node querying costs, the problem is PSPACE-complete. For a semi-adaptive version, in which one may query r nodes each in k rounds, we show membership in Σ2k−1 in the polynomial hierarchy, and hardness for Σ2k−5.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Deterministic and probabilistic binary search in graphs\",\"authors\":\"E. Emamjomeh-Zadeh, D. Kempe, Vikrant Singhal\",\"doi\":\"10.1145/2897518.2897656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the following natural generalization of Binary Search: in a given undirected, positively weighted graph, one vertex is a target. The algorithm’s task is to identify the target by adaptively querying vertices. In response to querying a node q, the algorithm learns either that q is the target, or is given an edge out of q that lies on a shortest path from q to the target. We study this problem in a general noisy model in which each query independently receives a correct answer with probability p > 1/2 (a known constant), and an (adversarial) incorrect one with probability 1 − p. Our main positive result is that when p = 1 (i.e., all answers are correct), log2 n queries are always sufficient. For general p, we give an (almost information-theoretically optimal) algorithm that uses, in expectation, no more than (1 − δ) logn/1 − H(p) + o(logn) + O(log2 (1/δ)) queries, and identifies the target correctly with probability at leas 1 − δ. Here, H(p) = −(p logp + (1 − p) log(1 − p)) denotes the entropy. The first bound is achieved by the algorithm that iteratively queries a 1-median of the nodes not ruled out yet; the second bound by careful repeated invocations of a multiplicative weights algorithm. Even for p = 1, we show several hardness results for the problem of determining whether a target can be found using K queries. Our upper bound of log2 n implies a quasipolynomial-time algorithm for undirected connected graphs; we show that this is best-possible under the Strong Exponential Time Hypothesis (SETH). Furthermore, for directed graphs, or for undirected graphs with non-uniform node querying costs, the problem is PSPACE-complete. For a semi-adaptive version, in which one may query r nodes each in k rounds, we show membership in Σ2k−1 in the polynomial hierarchy, and hardness for Σ2k−5.\",\"PeriodicalId\":442965,\"journal\":{\"name\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897518.2897656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897518.2897656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

我们考虑二分搜索的以下自然推广:在给定的无向正加权图中,一个顶点是目标。该算法的任务是通过自适应查询顶点来识别目标。作为对节点q的查询的响应,算法要么知道q是目标,要么从q中得到一条位于从q到目标的最短路径上的边。我们在一个一般的噪声模型中研究这个问题,其中每个查询独立地得到一个概率为p > 1/2(已知常数)的正确答案和一个概率为1 - p的(对抗的)错误答案。我们的主要积极结果是,当p = 1(即所有答案都是正确的)时,log2n个查询总是足够的。对于一般p,我们给出了一个(几乎是信息理论最优的)算法,该算法使用的期望不超过(1−δ) logn/1−H(p) + o(logn) + o(log2 (1/δ))查询,并以至少1−δ的概率正确识别目标。这里,H(p) =−(p logp +(1−p) log(1−p))表示熵。第一个边界是通过迭代查询尚未排除的节点的1中位数来实现的;第二个边界是通过仔细重复调用一个乘法权重算法。即使对于p = 1,对于使用K查询确定是否可以找到目标的问题,我们也显示了几个硬度结果。我们的log2 n的上界暗示了无向连通图的拟多项式时间算法;我们证明了在强指数时间假设(SETH)下这是最可能的。此外,对于有向图,或者具有非均匀节点查询代价的无向图,问题是pspace完全的。对于半自适应版本,其中每个节点可以在k轮中查询r个节点,我们显示了多项式层次结构中Σ2k−1的隶属度,以及Σ2k−5的硬度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deterministic and probabilistic binary search in graphs
We consider the following natural generalization of Binary Search: in a given undirected, positively weighted graph, one vertex is a target. The algorithm’s task is to identify the target by adaptively querying vertices. In response to querying a node q, the algorithm learns either that q is the target, or is given an edge out of q that lies on a shortest path from q to the target. We study this problem in a general noisy model in which each query independently receives a correct answer with probability p > 1/2 (a known constant), and an (adversarial) incorrect one with probability 1 − p. Our main positive result is that when p = 1 (i.e., all answers are correct), log2 n queries are always sufficient. For general p, we give an (almost information-theoretically optimal) algorithm that uses, in expectation, no more than (1 − δ) logn/1 − H(p) + o(logn) + O(log2 (1/δ)) queries, and identifies the target correctly with probability at leas 1 − δ. Here, H(p) = −(p logp + (1 − p) log(1 − p)) denotes the entropy. The first bound is achieved by the algorithm that iteratively queries a 1-median of the nodes not ruled out yet; the second bound by careful repeated invocations of a multiplicative weights algorithm. Even for p = 1, we show several hardness results for the problem of determining whether a target can be found using K queries. Our upper bound of log2 n implies a quasipolynomial-time algorithm for undirected connected graphs; we show that this is best-possible under the Strong Exponential Time Hypothesis (SETH). Furthermore, for directed graphs, or for undirected graphs with non-uniform node querying costs, the problem is PSPACE-complete. For a semi-adaptive version, in which one may query r nodes each in k rounds, we show membership in Σ2k−1 in the polynomial hierarchy, and hardness for Σ2k−5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exponential separation of communication and external information Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Explicit two-source extractors and resilient functions Constant-rate coding for multiparty interactive communication is impossible Approximating connectivity domination in weighted bounded-genus graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1