大规模分布式存储系统的元数据分区

Jan-Jan Wu, Pangfeng Liu, Y. Chung
{"title":"大规模分布式存储系统的元数据分区","authors":"Jan-Jan Wu, Pangfeng Liu, Y. Chung","doi":"10.1109/CLOUD.2010.24","DOIUrl":null,"url":null,"abstract":"With the emergence of large-scale storage systems that separate metadata management from fileread/write operations, and with requests targetting metadata account for over 80\\% of the total number of I/O requests, metadata management has become an interesting research problem on its own. When designing a metadata server cluster, the partitioning of the metadata among the servers is of critical importance for maintaining efficient metadata operations and balanced load distribution across the cluster. We propose a dynamic programming method combined with binary search to solve the partitioning problem. With theoretical analysis and extensive experiments, we show that our algorithm finds the partitioning that minimizes load imbalance among servers and maximize efficiency of metadata operations.","PeriodicalId":375404,"journal":{"name":"2010 IEEE 3rd International Conference on Cloud Computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Metadata Partitioning for Large-Scale Distributed Storage Systems\",\"authors\":\"Jan-Jan Wu, Pangfeng Liu, Y. Chung\",\"doi\":\"10.1109/CLOUD.2010.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the emergence of large-scale storage systems that separate metadata management from fileread/write operations, and with requests targetting metadata account for over 80\\\\% of the total number of I/O requests, metadata management has become an interesting research problem on its own. When designing a metadata server cluster, the partitioning of the metadata among the servers is of critical importance for maintaining efficient metadata operations and balanced load distribution across the cluster. We propose a dynamic programming method combined with binary search to solve the partitioning problem. With theoretical analysis and extensive experiments, we show that our algorithm finds the partitioning that minimizes load imbalance among servers and maximize efficiency of metadata operations.\",\"PeriodicalId\":375404,\"journal\":{\"name\":\"2010 IEEE 3rd International Conference on Cloud Computing\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 3rd International Conference on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD.2010.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 3rd International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2010.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

随着将元数据管理与文件读写操作分离的大规模存储系统的出现,以及针对元数据的请求占I/O请求总数的80%以上,元数据管理本身已经成为一个有趣的研究问题。在设计元数据服务器集群时,在服务器之间划分元数据对于保持高效的元数据操作和跨集群均衡的负载分布至关重要。提出了一种结合二分搜索的动态规划方法来解决分区问题。通过理论分析和大量的实验,我们证明了我们的算法找到了最小化服务器之间负载不平衡和最大化元数据操作效率的分区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metadata Partitioning for Large-Scale Distributed Storage Systems
With the emergence of large-scale storage systems that separate metadata management from fileread/write operations, and with requests targetting metadata account for over 80\% of the total number of I/O requests, metadata management has become an interesting research problem on its own. When designing a metadata server cluster, the partitioning of the metadata among the servers is of critical importance for maintaining efficient metadata operations and balanced load distribution across the cluster. We propose a dynamic programming method combined with binary search to solve the partitioning problem. With theoretical analysis and extensive experiments, we show that our algorithm finds the partitioning that minimizes load imbalance among servers and maximize efficiency of metadata operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bridging the Gap between Desktop and the Cloud for eScience Applications Storage Management in Virtualized Cloud Environment Adaptive Data Migration in Multi-tiered Storage Based Cloud Environment Performance Measurements and Analysis of Network I/O Applications in Virtualized Cloud Dynamic Provisioning Modeling for Virtualized Multi-tier Applications in Cloud Data Center
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1