基于多个双基地测量的定位和速度估计

Sebastian Woischneck, D. Fränken
{"title":"基于多个双基地测量的定位和速度估计","authors":"Sebastian Woischneck, D. Fränken","doi":"10.1109/MFI49285.2020.9235256","DOIUrl":null,"url":null,"abstract":"This paper discusses algorithms that can be used to estimate the position and possibly in addition the velocity of an object by means of bistatic measurements. Concerning position-only estimation based on bistatic range measurements, improved versions of an approximate maximum-likelihood estimator will be introduced and compared with methods known from literature. The new estimators will then be extended to also estimate velocity based on additional range-rate measurements. Simulation results confirm that the proposed estimators yield errors close to the Cramer-Rao lower bound.","PeriodicalId":446154,"journal":{"name":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"359 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Localization and velocity estimation based on multiple bistatic measurements\",\"authors\":\"Sebastian Woischneck, D. Fränken\",\"doi\":\"10.1109/MFI49285.2020.9235256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses algorithms that can be used to estimate the position and possibly in addition the velocity of an object by means of bistatic measurements. Concerning position-only estimation based on bistatic range measurements, improved versions of an approximate maximum-likelihood estimator will be introduced and compared with methods known from literature. The new estimators will then be extended to also estimate velocity based on additional range-rate measurements. Simulation results confirm that the proposed estimators yield errors close to the Cramer-Rao lower bound.\",\"PeriodicalId\":446154,\"journal\":{\"name\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"359 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI49285.2020.9235256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI49285.2020.9235256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了可用于通过双基地测量来估计物体位置和可能的速度的算法。关于基于双基地距离测量的位置估计,将介绍一种改进版本的近似最大似然估计器,并与文献中已知的方法进行比较。然后将新的估计器扩展到基于额外距离速率测量的速度估计。仿真结果证实了所提估计器产生的误差接近于Cramer-Rao下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Localization and velocity estimation based on multiple bistatic measurements
This paper discusses algorithms that can be used to estimate the position and possibly in addition the velocity of an object by means of bistatic measurements. Concerning position-only estimation based on bistatic range measurements, improved versions of an approximate maximum-likelihood estimator will be introduced and compared with methods known from literature. The new estimators will then be extended to also estimate velocity based on additional range-rate measurements. Simulation results confirm that the proposed estimators yield errors close to the Cramer-Rao lower bound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OAFuser: Online Adaptive Extended Object Tracking and Fusion using automotive Radar Detections Observability driven Multi-modal Line-scan Camera Calibration Localization and velocity estimation based on multiple bistatic measurements A Continuous Probabilistic Origin Association Filter for Extended Object Tracking Towards Automatic Classification of Fragmented Rock Piles via Proprioceptive Sensing and Wavelet Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1