稀疏距离信息的场景重建

Guangyi Chen, G. Dudek, L. Torres-Méndez
{"title":"稀疏距离信息的场景重建","authors":"Guangyi Chen, G. Dudek, L. Torres-Méndez","doi":"10.1109/CRV.2005.70","DOIUrl":null,"url":null,"abstract":"This paper addresses an approach to scene reconstruction by inferring missing range data in a partial range map based on intensity image and sparse initial range data. It is assumed that the initial known range data is given on a number of scan lines one pixel width. This assumption is natural for a range sensor to acquire range data in a 3D real world environment. Both edge information of the intensity image and linear interpolation of the range data are used. Experiments show that this method gives very good results in inferring missing range data. It outperforms both the previous method and bilinear interpolation when a very small percentage of range data is known.","PeriodicalId":307318,"journal":{"name":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Scene reconstruction with sparse range information\",\"authors\":\"Guangyi Chen, G. Dudek, L. Torres-Méndez\",\"doi\":\"10.1109/CRV.2005.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses an approach to scene reconstruction by inferring missing range data in a partial range map based on intensity image and sparse initial range data. It is assumed that the initial known range data is given on a number of scan lines one pixel width. This assumption is natural for a range sensor to acquire range data in a 3D real world environment. Both edge information of the intensity image and linear interpolation of the range data are used. Experiments show that this method gives very good results in inferring missing range data. It outperforms both the previous method and bilinear interpolation when a very small percentage of range data is known.\",\"PeriodicalId\":307318,\"journal\":{\"name\":\"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2005.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2005.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于强度图像和稀疏初始距离数据推断局部距离图中缺失距离数据的场景重建方法。假定初始已知距离数据是在若干条扫描线上给出的,扫描线的宽度为一像素。这个假设对于距离传感器在三维现实环境中获取距离数据是很自然的。同时利用了强度图像的边缘信息和距离数据的线性插值。实验表明,该方法在推断缺失距离数据方面取得了很好的效果。当已知很小比例的距离数据时,它优于之前的方法和双线性插值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scene reconstruction with sparse range information
This paper addresses an approach to scene reconstruction by inferring missing range data in a partial range map based on intensity image and sparse initial range data. It is assumed that the initial known range data is given on a number of scan lines one pixel width. This assumption is natural for a range sensor to acquire range data in a 3D real world environment. Both edge information of the intensity image and linear interpolation of the range data are used. Experiments show that this method gives very good results in inferring missing range data. It outperforms both the previous method and bilinear interpolation when a very small percentage of range data is known.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Head pose estimation of partially occluded faces Minimum Bayes error features for visual recognition by sequential feature selection and extraction Using vanishing points to correct camera rotation in images Dry granular flows need special tools Body tracking in human walk from monocular video sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1