Young-Sik Kim, Seon-Kyoo Lee, Seung-Jun Bae, Y. Sohn, Jung-Bae Lee, Joo-Sun Choi, Hong-June Park, J. Sim
{"title":"8GB/s四斜消除并行收发器在90纳米CMOS高速DRAM接口","authors":"Young-Sik Kim, Seon-Kyoo Lee, Seung-Jun Bae, Y. Sohn, Jung-Bae Lee, Joo-Sun Choi, Hong-June Park, J. Sim","doi":"10.1109/ISSCC.2012.6176952","DOIUrl":null,"url":null,"abstract":"In high-speed wireline communication, full-rate clocking for chip-to-chip interface has been widely adopted since it eliminates clock-induced deterministic jitter. Design with standard digital CMOS technologies, however, often limits the maximum frequency of circuit operation. The increase in power and circuit complexity in full-rate clocking makes the problem even worse in the design of a parallel transceiver whose clock tree travels through long interconnects. As an alternative to the full-rate clocking, frequency generation with a multiphase PLL has been also considered to relax the tight requirements of operating frequency of oscillator and flip-flops. DRAM interface, as a representative of high-speed parallel links, has adopted quadruple data rate (QDR) schemes for high-speed graphic applications [1-2]. However, as the data rate of DRAM interface increases up to multi-Gb/s range, skew in quadrature clock phases presents one of the most serious performance degradation factors.","PeriodicalId":255282,"journal":{"name":"2012 IEEE International Solid-State Circuits Conference","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"An 8GB/s quad-skew-cancelling parallel transceiver in 90nm CMOS for high-speed DRAM interface\",\"authors\":\"Young-Sik Kim, Seon-Kyoo Lee, Seung-Jun Bae, Y. Sohn, Jung-Bae Lee, Joo-Sun Choi, Hong-June Park, J. Sim\",\"doi\":\"10.1109/ISSCC.2012.6176952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In high-speed wireline communication, full-rate clocking for chip-to-chip interface has been widely adopted since it eliminates clock-induced deterministic jitter. Design with standard digital CMOS technologies, however, often limits the maximum frequency of circuit operation. The increase in power and circuit complexity in full-rate clocking makes the problem even worse in the design of a parallel transceiver whose clock tree travels through long interconnects. As an alternative to the full-rate clocking, frequency generation with a multiphase PLL has been also considered to relax the tight requirements of operating frequency of oscillator and flip-flops. DRAM interface, as a representative of high-speed parallel links, has adopted quadruple data rate (QDR) schemes for high-speed graphic applications [1-2]. However, as the data rate of DRAM interface increases up to multi-Gb/s range, skew in quadrature clock phases presents one of the most serious performance degradation factors.\",\"PeriodicalId\":255282,\"journal\":{\"name\":\"2012 IEEE International Solid-State Circuits Conference\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Solid-State Circuits Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2012.6176952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2012.6176952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An 8GB/s quad-skew-cancelling parallel transceiver in 90nm CMOS for high-speed DRAM interface
In high-speed wireline communication, full-rate clocking for chip-to-chip interface has been widely adopted since it eliminates clock-induced deterministic jitter. Design with standard digital CMOS technologies, however, often limits the maximum frequency of circuit operation. The increase in power and circuit complexity in full-rate clocking makes the problem even worse in the design of a parallel transceiver whose clock tree travels through long interconnects. As an alternative to the full-rate clocking, frequency generation with a multiphase PLL has been also considered to relax the tight requirements of operating frequency of oscillator and flip-flops. DRAM interface, as a representative of high-speed parallel links, has adopted quadruple data rate (QDR) schemes for high-speed graphic applications [1-2]. However, as the data rate of DRAM interface increases up to multi-Gb/s range, skew in quadrature clock phases presents one of the most serious performance degradation factors.