托克湖洪水管理:不确定条件下MPC运行

I. Menchacatorre, Roshan Sharma, Beathe Furenes, B. Lie
{"title":"托克湖洪水管理:不确定条件下MPC运行","authors":"I. Menchacatorre, Roshan Sharma, Beathe Furenes, B. Lie","doi":"10.3384/ecp201709","DOIUrl":null,"url":null,"abstract":"A deterministic reference tracking model predictive control (MPC) is in use at Skagerak Kraft for flood management of Lake Toke in Norway. An operational inflow estimate is used to predict the optimal gate opening at Dalsfos power station, with required constraints set by the Norwegian Water Resource and Energy Directorate (NVE). The operational inflow estimate is based on the meteorological forecast, and is uncertain; this may lead to broken concession requirements and unnecessary release of water through the floodgates. Currently not utilized, the meteorological uncertainty is quantified by an ensemble of possible weather forecasts. In this paper, quantified inflow uncertainty is studied and how this affects the operation of the current, deterministic MPC solution. Next, we develop an alternative, stochastic MPC solution based on multi objective optimization which directly takes the inflow uncertainty into consideration. A comparison of the results from both approaches concludes that the stochastic MPC solution seems to give better control by reducing the amount of water released through the flood gates. Furthermore, with less frequent update of the control signal, the benefit of the stochastic MPC is expected to increase.","PeriodicalId":179867,"journal":{"name":"Proceedings of The 60th SIMS Conference on Simulation and Modelling SIMS 2019, August 12-16, Västerås, Sweden","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Flood Management of Lake Toke: MPC Operation under Uncertainty\",\"authors\":\"I. Menchacatorre, Roshan Sharma, Beathe Furenes, B. Lie\",\"doi\":\"10.3384/ecp201709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A deterministic reference tracking model predictive control (MPC) is in use at Skagerak Kraft for flood management of Lake Toke in Norway. An operational inflow estimate is used to predict the optimal gate opening at Dalsfos power station, with required constraints set by the Norwegian Water Resource and Energy Directorate (NVE). The operational inflow estimate is based on the meteorological forecast, and is uncertain; this may lead to broken concession requirements and unnecessary release of water through the floodgates. Currently not utilized, the meteorological uncertainty is quantified by an ensemble of possible weather forecasts. In this paper, quantified inflow uncertainty is studied and how this affects the operation of the current, deterministic MPC solution. Next, we develop an alternative, stochastic MPC solution based on multi objective optimization which directly takes the inflow uncertainty into consideration. A comparison of the results from both approaches concludes that the stochastic MPC solution seems to give better control by reducing the amount of water released through the flood gates. Furthermore, with less frequent update of the control signal, the benefit of the stochastic MPC is expected to increase.\",\"PeriodicalId\":179867,\"journal\":{\"name\":\"Proceedings of The 60th SIMS Conference on Simulation and Modelling SIMS 2019, August 12-16, Västerås, Sweden\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 60th SIMS Conference on Simulation and Modelling SIMS 2019, August 12-16, Västerås, Sweden\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3384/ecp201709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 60th SIMS Conference on Simulation and Modelling SIMS 2019, August 12-16, Västerås, Sweden","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3384/ecp201709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

确定性参考跟踪模型预测控制(MPC)在挪威的Skagerak Kraft用于Toke湖的洪水管理。在挪威水资源和能源理事会(NVE)设定的约束条件下,使用运行流入估算来预测Dalsfos电站的最佳闸门开度。业务入流估算基于气象预报,具有不确定性;这可能会导致特许权要求的破坏和不必要的水通过闸门释放。目前尚未利用的气象不确定性是用可能的天气预报的集合来量化的。本文研究了量化的流入不确定性,以及它如何影响当前确定性MPC方案的运行。接下来,我们开发了一种基于多目标优化的随机MPC解决方案,该方案直接考虑了流入的不确定性。两种方法的结果比较得出结论,随机MPC解决方案似乎通过减少通过闸门释放的水量来提供更好的控制。此外,随着控制信号更新频率的降低,随机MPC的效益有望增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flood Management of Lake Toke: MPC Operation under Uncertainty
A deterministic reference tracking model predictive control (MPC) is in use at Skagerak Kraft for flood management of Lake Toke in Norway. An operational inflow estimate is used to predict the optimal gate opening at Dalsfos power station, with required constraints set by the Norwegian Water Resource and Energy Directorate (NVE). The operational inflow estimate is based on the meteorological forecast, and is uncertain; this may lead to broken concession requirements and unnecessary release of water through the floodgates. Currently not utilized, the meteorological uncertainty is quantified by an ensemble of possible weather forecasts. In this paper, quantified inflow uncertainty is studied and how this affects the operation of the current, deterministic MPC solution. Next, we develop an alternative, stochastic MPC solution based on multi objective optimization which directly takes the inflow uncertainty into consideration. A comparison of the results from both approaches concludes that the stochastic MPC solution seems to give better control by reducing the amount of water released through the flood gates. Furthermore, with less frequent update of the control signal, the benefit of the stochastic MPC is expected to increase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental and computational study on the effect of ash deposition on fluid dynamic behavior in a bubbling fluidized bed gasifier Gas Sensors for Early Detection of Fire Hazards Caused by Vehicles in Underground Mines Operations Dynamics of Gas Centrifugal Compressor: Process, Health and Performance Indicators Models for control of thermal energy in buildings Surrogate and Hybrid Models for Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1