{"title":"二甲双胍作用机制及临床应用新认识","authors":"Yun Yan, K. Kover, W. Moore","doi":"10.5772/intechopen.91148","DOIUrl":null,"url":null,"abstract":"Metformin is the first-line medication for Type 2 diabetes (T2D) treatment, and it is the only US FDA approved oral antidiabetic medication for pediatric patients with T2D 10 years and older. Metformin is also used to treat polycystic ovary syndrome (PCOS), another condition with underlying insulin resistance. The clinical applications of metformin are continuing to expand into other fields including cancer, aging, cardiovascular diseases, and neurodegenerative diseases. Metformin modulates multiple biological pathways. Its novel properties and effects continue to evolve; however, its molecular mechanism of action remains incompletely understood. In this chapter, we focus on the recent translational research and clinical data on the molecular action of metformin and the evidence linking the effects of metformin on insulin resistance, prediabetes, diabetes, aging, cancer, PCOS, cardiovascular diseases, and neurodegenerative diseases.","PeriodicalId":227880,"journal":{"name":"Metformin [Working Title]","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"New Insight into Metformin Mechanism of Action and Clinical Application\",\"authors\":\"Yun Yan, K. Kover, W. Moore\",\"doi\":\"10.5772/intechopen.91148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metformin is the first-line medication for Type 2 diabetes (T2D) treatment, and it is the only US FDA approved oral antidiabetic medication for pediatric patients with T2D 10 years and older. Metformin is also used to treat polycystic ovary syndrome (PCOS), another condition with underlying insulin resistance. The clinical applications of metformin are continuing to expand into other fields including cancer, aging, cardiovascular diseases, and neurodegenerative diseases. Metformin modulates multiple biological pathways. Its novel properties and effects continue to evolve; however, its molecular mechanism of action remains incompletely understood. In this chapter, we focus on the recent translational research and clinical data on the molecular action of metformin and the evidence linking the effects of metformin on insulin resistance, prediabetes, diabetes, aging, cancer, PCOS, cardiovascular diseases, and neurodegenerative diseases.\",\"PeriodicalId\":227880,\"journal\":{\"name\":\"Metformin [Working Title]\",\"volume\":\"200 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metformin [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.91148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metformin [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.91148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Insight into Metformin Mechanism of Action and Clinical Application
Metformin is the first-line medication for Type 2 diabetes (T2D) treatment, and it is the only US FDA approved oral antidiabetic medication for pediatric patients with T2D 10 years and older. Metformin is also used to treat polycystic ovary syndrome (PCOS), another condition with underlying insulin resistance. The clinical applications of metformin are continuing to expand into other fields including cancer, aging, cardiovascular diseases, and neurodegenerative diseases. Metformin modulates multiple biological pathways. Its novel properties and effects continue to evolve; however, its molecular mechanism of action remains incompletely understood. In this chapter, we focus on the recent translational research and clinical data on the molecular action of metformin and the evidence linking the effects of metformin on insulin resistance, prediabetes, diabetes, aging, cancer, PCOS, cardiovascular diseases, and neurodegenerative diseases.