基于模糊混淆矩阵的草书手写文本分类权值学习技术

G. Sarker
{"title":"基于模糊混淆矩阵的草书手写文本分类权值学习技术","authors":"G. Sarker","doi":"10.1109/CIEC.2016.7513802","DOIUrl":null,"url":null,"abstract":"A fuzzy confusion matrix based cursive handwritten text categorization has been implemented. Printed text is obtained from handwritten text through Modified Optimal Clustering Algorithm (MOCA). Optimal Clustering Algorithm (OCA) groups texts into different subject categories. Learning is conducted to extract the attributes along with corresponding weights for each subjects. Fuzzy confusion matrix has been used to measure several performance metrics with Holdout method. These are satisfactory. Over and above the text learning and recognition time is very less making the system efficient also.","PeriodicalId":443343,"journal":{"name":"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A weight learning technique for cursive handwritten text categorization with fuzzy confusion matirx\",\"authors\":\"G. Sarker\",\"doi\":\"10.1109/CIEC.2016.7513802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fuzzy confusion matrix based cursive handwritten text categorization has been implemented. Printed text is obtained from handwritten text through Modified Optimal Clustering Algorithm (MOCA). Optimal Clustering Algorithm (OCA) groups texts into different subject categories. Learning is conducted to extract the attributes along with corresponding weights for each subjects. Fuzzy confusion matrix has been used to measure several performance metrics with Holdout method. These are satisfactory. Over and above the text learning and recognition time is very less making the system efficient also.\",\"PeriodicalId\":443343,\"journal\":{\"name\":\"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIEC.2016.7513802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIEC.2016.7513802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

实现了一种基于模糊混淆矩阵的手写体文本分类方法。通过改进的最优聚类算法(MOCA)从手写文本中获得印刷文本。最优聚类算法(OCA)将文本分成不同的主题类别。通过学习提取每个主题的属性以及相应的权重。利用模糊混淆矩阵对几种性能指标进行了Holdout方法的度量。这些是令人满意的。除此之外,文本学习和识别时间也非常少,使系统效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A weight learning technique for cursive handwritten text categorization with fuzzy confusion matirx
A fuzzy confusion matrix based cursive handwritten text categorization has been implemented. Printed text is obtained from handwritten text through Modified Optimal Clustering Algorithm (MOCA). Optimal Clustering Algorithm (OCA) groups texts into different subject categories. Learning is conducted to extract the attributes along with corresponding weights for each subjects. Fuzzy confusion matrix has been used to measure several performance metrics with Holdout method. These are satisfactory. Over and above the text learning and recognition time is very less making the system efficient also.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design methodology, control and performance of a three-phase grid-tie PV inverter under maximum power point tracking An improved performance of the soft switching buck converter Multi-objective function for system modeling and optimal management of Micro grid: A hybrid technique A single-phase isolated Z-source inverter Three phase three switch modular Vienna, Boost and SEPIC rectifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1