基于组织的合作联盟形成

Sherief Abdallah, V. Lesser
{"title":"基于组织的合作联盟形成","authors":"Sherief Abdallah, V. Lesser","doi":"10.1109/IAT.2004.1342939","DOIUrl":null,"url":null,"abstract":"The coalition formation problem has received a considerable amount of attention in recent years. In this work we present a novel distributed algorithm that returns a solution in polynomial time and the quality of the returned solution increases as agents gain more experience. Our solution utilizes an underlying organization to guide the coalition formation process. We use reinforcement learning techniques to optimize decisions made locally by agents in the organization. Experimental results are presented, showing the potential of our approach.","PeriodicalId":281008,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":"{\"title\":\"Organization-based cooperative coalition formation\",\"authors\":\"Sherief Abdallah, V. Lesser\",\"doi\":\"10.1109/IAT.2004.1342939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The coalition formation problem has received a considerable amount of attention in recent years. In this work we present a novel distributed algorithm that returns a solution in polynomial time and the quality of the returned solution increases as agents gain more experience. Our solution utilizes an underlying organization to guide the coalition formation process. We use reinforcement learning techniques to optimize decisions made locally by agents in the organization. Experimental results are presented, showing the potential of our approach.\",\"PeriodicalId\":281008,\"journal\":{\"name\":\"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAT.2004.1342939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAT.2004.1342939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

摘要

近年来,联合政府的组建问题受到了相当多的关注。在这项工作中,我们提出了一种新的分布式算法,该算法在多项式时间内返回一个解,并且随着智能体获得更多的经验,返回解的质量也会增加。我们的解决方案利用一个底层组织来指导联盟的形成过程。我们使用强化学习技术来优化组织中代理在局部做出的决策。实验结果显示了我们的方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Organization-based cooperative coalition formation
The coalition formation problem has received a considerable amount of attention in recent years. In this work we present a novel distributed algorithm that returns a solution in polynomial time and the quality of the returned solution increases as agents gain more experience. Our solution utilizes an underlying organization to guide the coalition formation process. We use reinforcement learning techniques to optimize decisions made locally by agents in the organization. Experimental results are presented, showing the potential of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CHQ: a multi-agent reinforcement learning scheme for partially observable Markov decision processes A fuzzy multi-agent bidding model An agent-based approach to distributed data and information fusion Economic model of TAC SCM game Towards genetically optimised responsive negotiation agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1