基于压缩测量域的低质量光学视频多目标直接跟踪与分类

C. Kwan, David Gribben, T. Tran
{"title":"基于压缩测量域的低质量光学视频多目标直接跟踪与分类","authors":"C. Kwan, David Gribben, T. Tran","doi":"10.1109/UEMCON47517.2019.8993029","DOIUrl":null,"url":null,"abstract":"Data collected in compressive measurement domain can save data storage and transmission costs. In this paper, we summarize new results in human target tracking and classification using compressive measurements directly. Two deep learning algorithms known as You Only Look Once (YOLO) and residual network (ResNet) have been applied. YOLO was used for object detection and tracking and ResNet was used for human classification. Extensive experiments using low quality and long range optical videos in the SENSIAC database showed that the proposed approach is promising.","PeriodicalId":187022,"journal":{"name":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Tracking and Classification of Multiple Human Objects Directly in Compressive Measurement Domain for Low Quality Optical Videos\",\"authors\":\"C. Kwan, David Gribben, T. Tran\",\"doi\":\"10.1109/UEMCON47517.2019.8993029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data collected in compressive measurement domain can save data storage and transmission costs. In this paper, we summarize new results in human target tracking and classification using compressive measurements directly. Two deep learning algorithms known as You Only Look Once (YOLO) and residual network (ResNet) have been applied. YOLO was used for object detection and tracking and ResNet was used for human classification. Extensive experiments using low quality and long range optical videos in the SENSIAC database showed that the proposed approach is promising.\",\"PeriodicalId\":187022,\"journal\":{\"name\":\"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"192 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON47517.2019.8993029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON47517.2019.8993029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

压缩测量域采集的数据可以节省数据的存储和传输成本。本文总结了直接利用压缩测量进行人体目标跟踪和分类的新成果。应用了You Only Look Once (YOLO)和residual network (ResNet)两种深度学习算法。使用YOLO进行目标检测和跟踪,使用ResNet进行人体分类。利用senac数据库中的低质量和远程光学视频进行的大量实验表明,该方法是有前途的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tracking and Classification of Multiple Human Objects Directly in Compressive Measurement Domain for Low Quality Optical Videos
Data collected in compressive measurement domain can save data storage and transmission costs. In this paper, we summarize new results in human target tracking and classification using compressive measurements directly. Two deep learning algorithms known as You Only Look Once (YOLO) and residual network (ResNet) have been applied. YOLO was used for object detection and tracking and ResNet was used for human classification. Extensive experiments using low quality and long range optical videos in the SENSIAC database showed that the proposed approach is promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning for DDoS Attack Classification Using Hive Plots Low Power Design for DVFS Capable Software ADREMOVER: THE IMPROVED MACHINE LEARNING APPROACH FOR BLOCKING ADS Overhead View Person Detection Using YOLO Multi-sensor Wearable for Child Safety
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1