Pannotia:理解不规则的GPGPU图形应用

Shuai Che, Bradford M. Beckmann, S. Reinhardt, K. Skadron
{"title":"Pannotia:理解不规则的GPGPU图形应用","authors":"Shuai Che, Bradford M. Beckmann, S. Reinhardt, K. Skadron","doi":"10.1109/IISWC.2013.6704684","DOIUrl":null,"url":null,"abstract":"GPUs have become popular recently to accelerate general-purpose data-parallel applications. However, most existing work has focused on GPU-friendly applications with regular data structures and access patterns. While a few prior studies have shown that some irregular workloads can also achieve speedups on GPUs, this domain has not been investigated thoroughly. Graph applications are one such set of irregular workloads, used in many commercial and scientific domains. In particular, graph mining -as well as web and social network analysis- are promising applications that GPUs could accelerate. However, implementing and optimizing these graph algorithms on SIMD architectures is challenging because their data-dependent behavior results in significant branch and memory divergence. To address these concerns and facilitate research in this area, this paper presents and characterizes a suite of GPGPU graph applications, Pannotia, which is implemented in OpenCL and contains problems from diverse and important graph application domains. We perform a first-step characterization and analysis of these benchmarks and study their behavior on real hardware. We also use clustering analysis to illustrate the similarities and differences of the applications in the suite. Finally, we make architectural and scheduling suggestions that will improve their execution efficiency on GPUs.","PeriodicalId":365868,"journal":{"name":"2013 IEEE International Symposium on Workload Characterization (IISWC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"178","resultStr":"{\"title\":\"Pannotia: Understanding irregular GPGPU graph applications\",\"authors\":\"Shuai Che, Bradford M. Beckmann, S. Reinhardt, K. Skadron\",\"doi\":\"10.1109/IISWC.2013.6704684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GPUs have become popular recently to accelerate general-purpose data-parallel applications. However, most existing work has focused on GPU-friendly applications with regular data structures and access patterns. While a few prior studies have shown that some irregular workloads can also achieve speedups on GPUs, this domain has not been investigated thoroughly. Graph applications are one such set of irregular workloads, used in many commercial and scientific domains. In particular, graph mining -as well as web and social network analysis- are promising applications that GPUs could accelerate. However, implementing and optimizing these graph algorithms on SIMD architectures is challenging because their data-dependent behavior results in significant branch and memory divergence. To address these concerns and facilitate research in this area, this paper presents and characterizes a suite of GPGPU graph applications, Pannotia, which is implemented in OpenCL and contains problems from diverse and important graph application domains. We perform a first-step characterization and analysis of these benchmarks and study their behavior on real hardware. We also use clustering analysis to illustrate the similarities and differences of the applications in the suite. Finally, we make architectural and scheduling suggestions that will improve their execution efficiency on GPUs.\",\"PeriodicalId\":365868,\"journal\":{\"name\":\"2013 IEEE International Symposium on Workload Characterization (IISWC)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"178\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Workload Characterization (IISWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISWC.2013.6704684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Workload Characterization (IISWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC.2013.6704684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 178

摘要

gpu最近在加速通用数据并行应用方面变得非常流行。然而,大多数现有的工作都集中在具有常规数据结构和访问模式的gpu友好应用程序上。虽然之前的一些研究表明,一些不规则的工作负载也可以在gpu上实现加速,但这一领域尚未得到彻底的研究。图应用程序就是这样一组不规则的工作负载,用于许多商业和科学领域。特别是图形挖掘——以及网络和社交网络分析——是gpu可以加速的有前途的应用程序。然而,在SIMD架构上实现和优化这些图算法是具有挑战性的,因为它们的数据依赖行为会导致显著的分支和内存分歧。为了解决这些问题并促进这一领域的研究,本文提出并描述了一套GPGPU图形应用程序Pannotia,它是在OpenCL中实现的,包含了来自不同和重要图形应用领域的问题。我们对这些基准执行第一步表征和分析,并研究它们在实际硬件上的行为。我们还使用聚类分析来说明套件中应用程序的相同点和不同点。最后,我们提出了架构和调度建议,以提高它们在gpu上的执行效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pannotia: Understanding irregular GPGPU graph applications
GPUs have become popular recently to accelerate general-purpose data-parallel applications. However, most existing work has focused on GPU-friendly applications with regular data structures and access patterns. While a few prior studies have shown that some irregular workloads can also achieve speedups on GPUs, this domain has not been investigated thoroughly. Graph applications are one such set of irregular workloads, used in many commercial and scientific domains. In particular, graph mining -as well as web and social network analysis- are promising applications that GPUs could accelerate. However, implementing and optimizing these graph algorithms on SIMD architectures is challenging because their data-dependent behavior results in significant branch and memory divergence. To address these concerns and facilitate research in this area, this paper presents and characterizes a suite of GPGPU graph applications, Pannotia, which is implemented in OpenCL and contains problems from diverse and important graph application domains. We perform a first-step characterization and analysis of these benchmarks and study their behavior on real hardware. We also use clustering analysis to illustrate the similarities and differences of the applications in the suite. Finally, we make architectural and scheduling suggestions that will improve their execution efficiency on GPUs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pannotia: Understanding irregular GPGPU graph applications Performance, energy characterizations and architectural implications of an emerging mobile platform benchmark suite - MobileBench Power and performance of GPU-accelerated systems: A closer look Hardware-independent application characterization Performance implications of System Management Mode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1