受衰落影响的随机无线网络中的保密中断

Satyanarayana Vuppala, G. Abreu
{"title":"受衰落影响的随机无线网络中的保密中断","authors":"Satyanarayana Vuppala, G. Abreu","doi":"10.1109/PIMRC.2013.6666177","DOIUrl":null,"url":null,"abstract":"We investigated the secrecy outage of unicast channels in random networks exposed to unknown numbers of randomly located eavesdroppers, obtaining original expressions which include uncertainty in terms of the location of legitimate nodes relative to eavesdroppers, the number of eavesdroppers, and fading. Under such conditions, we derive the path gain distributions of legitimate and eavesdropper nodes, as well as the corresponding secrecy non-outage. Two interesting conclusions can be drawn from our analysis. The first is that the uncertainty on the number of eavesdropper does not play a significant role in quantifying secrecy outage; and the second is that secret communication at a given rate is possible (albeit subjected to outage), with very low power. Specifically, it is found that the for a given fading figure and network density (which fundamentally determines the secrecy outage) similar secrecy outage is experience by the k-th furthest legitimate node, independent on the source's transmit power.","PeriodicalId":210993,"journal":{"name":"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Secrecy outage in random wireless networks subjected to fading\",\"authors\":\"Satyanarayana Vuppala, G. Abreu\",\"doi\":\"10.1109/PIMRC.2013.6666177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigated the secrecy outage of unicast channels in random networks exposed to unknown numbers of randomly located eavesdroppers, obtaining original expressions which include uncertainty in terms of the location of legitimate nodes relative to eavesdroppers, the number of eavesdroppers, and fading. Under such conditions, we derive the path gain distributions of legitimate and eavesdropper nodes, as well as the corresponding secrecy non-outage. Two interesting conclusions can be drawn from our analysis. The first is that the uncertainty on the number of eavesdropper does not play a significant role in quantifying secrecy outage; and the second is that secret communication at a given rate is possible (albeit subjected to outage), with very low power. Specifically, it is found that the for a given fading figure and network density (which fundamentally determines the secrecy outage) similar secrecy outage is experience by the k-th furthest legitimate node, independent on the source's transmit power.\",\"PeriodicalId\":210993,\"journal\":{\"name\":\"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRC.2013.6666177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2013.6666177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们研究了随机网络中暴露于未知数量随机窃听者的单播信道的保密中断,得到了原始表达式,其中包括合法节点相对于窃听者的位置、窃听者的数量和衰落的不确定性。在这种情况下,我们推导出合法节点和窃听节点的路径增益分布,以及相应的保密不中断。从我们的分析中可以得出两个有趣的结论。第一,窃听者数量的不确定性对保密中断的量化没有显著影响;其次,在一个给定的速率下秘密通信是可能的(尽管可能会中断),并且功耗非常低。具体来说,对于给定的衰落图和网络密度(这从根本上决定了保密中断),类似的保密中断是由第k个最远的合法节点经历的,与源的发射功率无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Secrecy outage in random wireless networks subjected to fading
We investigated the secrecy outage of unicast channels in random networks exposed to unknown numbers of randomly located eavesdroppers, obtaining original expressions which include uncertainty in terms of the location of legitimate nodes relative to eavesdroppers, the number of eavesdroppers, and fading. Under such conditions, we derive the path gain distributions of legitimate and eavesdropper nodes, as well as the corresponding secrecy non-outage. Two interesting conclusions can be drawn from our analysis. The first is that the uncertainty on the number of eavesdropper does not play a significant role in quantifying secrecy outage; and the second is that secret communication at a given rate is possible (albeit subjected to outage), with very low power. Specifically, it is found that the for a given fading figure and network density (which fundamentally determines the secrecy outage) similar secrecy outage is experience by the k-th furthest legitimate node, independent on the source's transmit power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental validation of fog models for FSO under laboratory controlled conditions EWMA-triggered waterfilling for reduced-complexity resource management in ad-hoc connections Sleep scheduling in IEEE 802.16j relay networks A comparison of implicit and explicit channel feedback methods for MU-MIMO WLAN systems Optimization of collaborating secondary users in a cooperative sensing under noise uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1