基于图像处理的磁共振成像图像中脑肿瘤提取的预处理与颅骨剥离

Shweta B. Suryawanshi, S. B. Patil
{"title":"基于图像处理的磁共振成像图像中脑肿瘤提取的预处理与颅骨剥离","authors":"Shweta B. Suryawanshi, S. B. Patil","doi":"10.3233/apc210208","DOIUrl":null,"url":null,"abstract":"Many neuroimaging processing functions believe the preprocessing and skull strip (SS) to be an important step in brain tumor diagnosis. For complex physical reasons intensity changes in brain structure and magnetic resonance imaging of the brain, a proper preprocessing and SS is an important part. The method of removing the skull is relayed to the taking away of the skull area in the brain for medical investigation. It is more correct and necessary techniques for distinguishing between brain regions and cranial regions and this is believed a demanding task. This paper gives detailed review on the preprocessing and traditional transition to machine learning and deep learning-based automatic SS techniques of magnetic resonance imaging.","PeriodicalId":429440,"journal":{"name":"Recent Trends in Intensive Computing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preprocessing and Skull Stripping of Brain Tumor Extraction from Magnetic Resonance Imaging Images Using Image Processing\",\"authors\":\"Shweta B. Suryawanshi, S. B. Patil\",\"doi\":\"10.3233/apc210208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many neuroimaging processing functions believe the preprocessing and skull strip (SS) to be an important step in brain tumor diagnosis. For complex physical reasons intensity changes in brain structure and magnetic resonance imaging of the brain, a proper preprocessing and SS is an important part. The method of removing the skull is relayed to the taking away of the skull area in the brain for medical investigation. It is more correct and necessary techniques for distinguishing between brain regions and cranial regions and this is believed a demanding task. This paper gives detailed review on the preprocessing and traditional transition to machine learning and deep learning-based automatic SS techniques of magnetic resonance imaging.\",\"PeriodicalId\":429440,\"journal\":{\"name\":\"Recent Trends in Intensive Computing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Trends in Intensive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/apc210208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Trends in Intensive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/apc210208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多神经影像处理功能认为预处理和颅骨条带(SS)是脑肿瘤诊断的重要步骤。由于复杂的物理原因,脑结构强度变化和脑磁共振成像,适当的预处理和SS是重要的一环。移除颅骨的方法被转译为在大脑中取出颅骨区域进行医学调查。区分脑区和颅区是一项更为正确和必要的技术,这被认为是一项艰巨的任务。本文详细介绍了磁共振成像的预处理和传统的向机器学习和基于深度学习的自动SS技术的过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preprocessing and Skull Stripping of Brain Tumor Extraction from Magnetic Resonance Imaging Images Using Image Processing
Many neuroimaging processing functions believe the preprocessing and skull strip (SS) to be an important step in brain tumor diagnosis. For complex physical reasons intensity changes in brain structure and magnetic resonance imaging of the brain, a proper preprocessing and SS is an important part. The method of removing the skull is relayed to the taking away of the skull area in the brain for medical investigation. It is more correct and necessary techniques for distinguishing between brain regions and cranial regions and this is believed a demanding task. This paper gives detailed review on the preprocessing and traditional transition to machine learning and deep learning-based automatic SS techniques of magnetic resonance imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Agricultural Product Supply Chain Management Using Blockchain Technology: Concept An Image Encryption Technique Based on Logistic Sine Map and an Encrypted Image Retrieval Using DCT Frequency Study on SDN with Security Issues Using Mininet Smart Ambulance System with Remote Knowledge Communications Through Cloud Diabetes Risk Forecasting Using Logistic Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1