用户评价反应可以仅通过应用功能进行预测

Federica Sarro, M. Harman, Yue Jia, Yuanyuan Zhang
{"title":"用户评价反应可以仅通过应用功能进行预测","authors":"Federica Sarro, M. Harman, Yue Jia, Yuanyuan Zhang","doi":"10.1109/RE.2018.00018","DOIUrl":null,"url":null,"abstract":"In this paper we provide empirical evidence that the rating that an app attracts can be accurately predicted from the features it offers. Our results, based on an analysis of 11,537 apps from the Samsung Android and BlackBerry World app stores, indicate that the rating of 89% of these apps can be predicted with 100% accuracy. Our prediction model is built by using feature and rating information from the existing apps offered in the App Store and it yields highly accurate rating predictions, using only a few (11-12) existing apps for case-based prediction. These findings may have important implications for requirements engineering in app stores: They indicate that app developers may be able to obtain (very accurate) assessments of the customer reaction to their proposed feature sets (requirements), thereby providing new opportunities to support the requirements elicitation process for app developers.","PeriodicalId":445032,"journal":{"name":"2018 IEEE 26th International Requirements Engineering Conference (RE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Customer Rating Reactions Can Be Predicted Purely using App Features\",\"authors\":\"Federica Sarro, M. Harman, Yue Jia, Yuanyuan Zhang\",\"doi\":\"10.1109/RE.2018.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we provide empirical evidence that the rating that an app attracts can be accurately predicted from the features it offers. Our results, based on an analysis of 11,537 apps from the Samsung Android and BlackBerry World app stores, indicate that the rating of 89% of these apps can be predicted with 100% accuracy. Our prediction model is built by using feature and rating information from the existing apps offered in the App Store and it yields highly accurate rating predictions, using only a few (11-12) existing apps for case-based prediction. These findings may have important implications for requirements engineering in app stores: They indicate that app developers may be able to obtain (very accurate) assessments of the customer reaction to their proposed feature sets (requirements), thereby providing new opportunities to support the requirements elicitation process for app developers.\",\"PeriodicalId\":445032,\"journal\":{\"name\":\"2018 IEEE 26th International Requirements Engineering Conference (RE)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 26th International Requirements Engineering Conference (RE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RE.2018.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 26th International Requirements Engineering Conference (RE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RE.2018.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

在本文中,我们提供了经验证据,证明应用吸引的评级可以从其提供的功能中准确预测出来。基于对三星Android和黑莓世界应用商店中11537款应用的分析,我们的结果表明,89%的应用的评级可以100%准确地预测出来。我们的预测模型是通过使用App Store中现有应用的功能和评级信息来构建的,它产生了高度准确的评级预测,仅使用少数(11-12)个现有应用进行基于案例的预测。这些发现可能对应用程序商店的需求工程有重要的影响:它们表明应用程序开发人员可能能够获得(非常准确的)客户对其提议的功能集(需求)的反应的评估,从而为应用程序开发人员提供新的机会来支持需求激发过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Customer Rating Reactions Can Be Predicted Purely using App Features
In this paper we provide empirical evidence that the rating that an app attracts can be accurately predicted from the features it offers. Our results, based on an analysis of 11,537 apps from the Samsung Android and BlackBerry World app stores, indicate that the rating of 89% of these apps can be predicted with 100% accuracy. Our prediction model is built by using feature and rating information from the existing apps offered in the App Store and it yields highly accurate rating predictions, using only a few (11-12) existing apps for case-based prediction. These findings may have important implications for requirements engineering in app stores: They indicate that app developers may be able to obtain (very accurate) assessments of the customer reaction to their proposed feature sets (requirements), thereby providing new opportunities to support the requirements elicitation process for app developers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CaRE: A Refinement Calculus for Requirements Engineering Based on Argumentation Semantics The Grace Period Has Ended: An Approach to Operationalize GDPR Requirements The Manager Perspective on Requirements Impact on Automotive Systems Development Speed Data Driven Requirements Engineering: Implications for the Community [Publisher's information]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1