磁铁矿/钴/锰锌-水纳米铁磁流体的双溶液从拉伸片与磁感应效应:MHD停滞流动计算和分析

M. Ferdows, Tahia Tazin, O. Bég, T. Bég, Kadir Ali
{"title":"磁铁矿/钴/锰锌-水纳米铁磁流体的双溶液从拉伸片与磁感应效应:MHD停滞流动计算和分析","authors":"M. Ferdows, Tahia Tazin, O. Bég, T. Bég, Kadir Ali","doi":"10.1080/15502287.2023.2211985","DOIUrl":null,"url":null,"abstract":"Abstract A theoretical study is presented for the steady magnetohydrodynamic (MHD) boundary layer stagnation point flow of a nano-ferrofluid along a linearly moving stretching sheet, as a simulation of functional magnetic materials processing. Due to having imerging applications in heat transfer, the nano-ferrofluids draw the attention which comprise an aqueous base fluid doped with a variety of magnetic nanoparticles, i.e. magnetite (Fe3O4), cobalt ferrite (CoFe2O4) and Manganese-zinc (Mn-Zn) ferrite. A partial differential equation mathematical model is developed for mass, momentum, magnetic field continuity (induction), and energy with appropriate wall and free stream boundary conditions. Following similarity transformations, the dimensionless resultant nonlinear ordinary differential boundary value problem is solved numerically using the robust bvp4c function in MATLAB which features very efficient 4th order optimized Runge–Kutta quadrature. Dual solutions for the upper branch and lower branch separated by a critical point are identified. Visualization of velocity, temperature, and induced magnetic field function are presented graphically including validation of solutions with previous studies. Furthermore, skin-friction coefficient and the local Nusselt number are also computed. The impact of the controlling parameters, i.e. Prandtl number nanoparticle volume fraction parameter reciprocal of magnetic Prandtl number magnetic parameter and stretching rate ratio parameter have been illustrated through graphs and evaluated when a desire heat transfer can occur. Furthermore, resistance between fluid and the plate can be increased with the growing magnetic Prandtl number values. Increment in magnetic parameter ( ) produces an elevation in the induced magnetic field magnitudes. Skin friction and Nusselt number are found to be greater for cobalt nanoparticles when compared to magnetite and Mn-Zn ferromagnetic nanoparticles when there is an increase in reciprocal magnetic Prandtl number. The simulations provide a deeper insight into the manufacturing flows of functional nano-ferromagnetic materials of relevance to deposition and coating systems.","PeriodicalId":315058,"journal":{"name":"International Journal for Computational Methods in Engineering Science and Mechanics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual solutions of magnetite/cobalt/manganese-zinc-aqueous nano-ferrofluids from a stretching sheet with magnetic induction effects: MHD stagnation flow computation and analysis\",\"authors\":\"M. Ferdows, Tahia Tazin, O. Bég, T. Bég, Kadir Ali\",\"doi\":\"10.1080/15502287.2023.2211985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A theoretical study is presented for the steady magnetohydrodynamic (MHD) boundary layer stagnation point flow of a nano-ferrofluid along a linearly moving stretching sheet, as a simulation of functional magnetic materials processing. Due to having imerging applications in heat transfer, the nano-ferrofluids draw the attention which comprise an aqueous base fluid doped with a variety of magnetic nanoparticles, i.e. magnetite (Fe3O4), cobalt ferrite (CoFe2O4) and Manganese-zinc (Mn-Zn) ferrite. A partial differential equation mathematical model is developed for mass, momentum, magnetic field continuity (induction), and energy with appropriate wall and free stream boundary conditions. Following similarity transformations, the dimensionless resultant nonlinear ordinary differential boundary value problem is solved numerically using the robust bvp4c function in MATLAB which features very efficient 4th order optimized Runge–Kutta quadrature. Dual solutions for the upper branch and lower branch separated by a critical point are identified. Visualization of velocity, temperature, and induced magnetic field function are presented graphically including validation of solutions with previous studies. Furthermore, skin-friction coefficient and the local Nusselt number are also computed. The impact of the controlling parameters, i.e. Prandtl number nanoparticle volume fraction parameter reciprocal of magnetic Prandtl number magnetic parameter and stretching rate ratio parameter have been illustrated through graphs and evaluated when a desire heat transfer can occur. Furthermore, resistance between fluid and the plate can be increased with the growing magnetic Prandtl number values. Increment in magnetic parameter ( ) produces an elevation in the induced magnetic field magnitudes. Skin friction and Nusselt number are found to be greater for cobalt nanoparticles when compared to magnetite and Mn-Zn ferromagnetic nanoparticles when there is an increase in reciprocal magnetic Prandtl number. The simulations provide a deeper insight into the manufacturing flows of functional nano-ferromagnetic materials of relevance to deposition and coating systems.\",\"PeriodicalId\":315058,\"journal\":{\"name\":\"International Journal for Computational Methods in Engineering Science and Mechanics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Computational Methods in Engineering Science and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15502287.2023.2211985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Computational Methods in Engineering Science and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15502287.2023.2211985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要对纳米铁磁流体沿线性运动拉伸片的稳态磁流体边界层滞止点流动进行了理论研究,模拟了功能磁性材料的加工过程。由于在传热方面的应用日益广泛,纳米铁磁流体引起了人们的注意,它包括掺杂各种磁性纳米颗粒的水基流体,即磁铁矿(Fe3O4)、钴铁氧体(CoFe2O4)和锰锌铁氧体(Mn-Zn)。在适当的壁面和自由流边界条件下,建立了质量、动量、磁场连续性(感应)和能量的偏微分方程数学模型。在相似变换的基础上,利用MATLAB中具有高效四阶优化龙格-库塔正交特性的鲁棒函数bvp4c,对无量纲合成非线性常微分边值问题进行了数值求解。给出了被一个临界点隔开的上分支和下分支的对偶解。给出了速度、温度和感应磁场函数的可视化图形,并与前人的研究结果进行了验证。此外,还计算了摩擦系数和局部努塞尔数。通过图形说明了控制参数普朗特数、纳米粒子体积分数、磁性普朗特数的倒数、磁性参数和拉伸率比参数的影响,并评价了期望传热发生时的影响。此外,随着磁普朗特数的增大,流体与平板之间的阻力也会增大。磁性参数()的增加产生感应磁场强度的提升。当磁普朗特数增加时,钴纳米粒子的表面摩擦和努塞尔数比磁铁矿和锰锌铁磁纳米粒子更大。模拟提供了对与沉积和涂层系统相关的功能纳米铁磁材料的制造流程的更深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual solutions of magnetite/cobalt/manganese-zinc-aqueous nano-ferrofluids from a stretching sheet with magnetic induction effects: MHD stagnation flow computation and analysis
Abstract A theoretical study is presented for the steady magnetohydrodynamic (MHD) boundary layer stagnation point flow of a nano-ferrofluid along a linearly moving stretching sheet, as a simulation of functional magnetic materials processing. Due to having imerging applications in heat transfer, the nano-ferrofluids draw the attention which comprise an aqueous base fluid doped with a variety of magnetic nanoparticles, i.e. magnetite (Fe3O4), cobalt ferrite (CoFe2O4) and Manganese-zinc (Mn-Zn) ferrite. A partial differential equation mathematical model is developed for mass, momentum, magnetic field continuity (induction), and energy with appropriate wall and free stream boundary conditions. Following similarity transformations, the dimensionless resultant nonlinear ordinary differential boundary value problem is solved numerically using the robust bvp4c function in MATLAB which features very efficient 4th order optimized Runge–Kutta quadrature. Dual solutions for the upper branch and lower branch separated by a critical point are identified. Visualization of velocity, temperature, and induced magnetic field function are presented graphically including validation of solutions with previous studies. Furthermore, skin-friction coefficient and the local Nusselt number are also computed. The impact of the controlling parameters, i.e. Prandtl number nanoparticle volume fraction parameter reciprocal of magnetic Prandtl number magnetic parameter and stretching rate ratio parameter have been illustrated through graphs and evaluated when a desire heat transfer can occur. Furthermore, resistance between fluid and the plate can be increased with the growing magnetic Prandtl number values. Increment in magnetic parameter ( ) produces an elevation in the induced magnetic field magnitudes. Skin friction and Nusselt number are found to be greater for cobalt nanoparticles when compared to magnetite and Mn-Zn ferromagnetic nanoparticles when there is an increase in reciprocal magnetic Prandtl number. The simulations provide a deeper insight into the manufacturing flows of functional nano-ferromagnetic materials of relevance to deposition and coating systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coarse graining with control points: a cubic-Bézier based approach to modeling athermal fibrous materials Effect of axial preloads on torsional behavior of superelastic shape memory alloy tubes – experimental investigation and simulation/predictions of intricate inner loops A microelement plastic strain accumulation model for fatigue life prediction Optimizing integration point density for exponential finite element shape functions for phase-field modeling of fracture in functionally graded materials Mechanical design of an upper limb robotic rehabilitation system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1