基于词的多N -Gram模型和面向特征参数随机搜索的网站分类

Ashadullah Shawon, S. T. Zuhori, F. Mahmud, Md. Jamil-Ur Rahman
{"title":"基于词的多N -Gram模型和面向特征参数随机搜索的网站分类","authors":"Ashadullah Shawon, S. T. Zuhori, F. Mahmud, Md. Jamil-Ur Rahman","doi":"10.1109/ICCITECHN.2018.8631907","DOIUrl":null,"url":null,"abstract":"Website classification is a convenient starting point for building an intelligent web browser and social networking sites that can understand the favorite categories of a user and also detect adult or harmful websites perfectly. Classifying the web sites using the information of the Uniform Resource Locator (URL) is an important and fast technique. A perfect result is needed for URL classification to make it usable in the real world applications. So we have proposed an improved approach for URL classification that is able to provide a better result. We have introduced the word-based multiple n-gram models for efficient feature extraction and multinomial distribution for Naive Bayes classifier under the Random Search pipeline for hyperparameter optimization that finds the best parameters of the URL features. The experimental result of our research is compared with the result of previous research works and we have shown a better result than the existing result. Our experimental result provides 88.77% in recall and 87.63% in F1-Score which is the best performance so far.","PeriodicalId":355984,"journal":{"name":"2018 21st International Conference of Computer and Information Technology (ICCIT)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Website Classification Using Word Based Multiple N -Gram Models and Random Search Oriented Feature Parameters\",\"authors\":\"Ashadullah Shawon, S. T. Zuhori, F. Mahmud, Md. Jamil-Ur Rahman\",\"doi\":\"10.1109/ICCITECHN.2018.8631907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Website classification is a convenient starting point for building an intelligent web browser and social networking sites that can understand the favorite categories of a user and also detect adult or harmful websites perfectly. Classifying the web sites using the information of the Uniform Resource Locator (URL) is an important and fast technique. A perfect result is needed for URL classification to make it usable in the real world applications. So we have proposed an improved approach for URL classification that is able to provide a better result. We have introduced the word-based multiple n-gram models for efficient feature extraction and multinomial distribution for Naive Bayes classifier under the Random Search pipeline for hyperparameter optimization that finds the best parameters of the URL features. The experimental result of our research is compared with the result of previous research works and we have shown a better result than the existing result. Our experimental result provides 88.77% in recall and 87.63% in F1-Score which is the best performance so far.\",\"PeriodicalId\":355984,\"journal\":{\"name\":\"2018 21st International Conference of Computer and Information Technology (ICCIT)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 21st International Conference of Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2018.8631907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference of Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2018.8631907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

网站分类是构建智能网页浏览器和社交网站的一个方便的起点,它可以了解用户喜欢的类别,也可以完美地检测成人或有害网站。利用统一资源定位器(URL)的信息对网站进行分类是一项重要而快速的技术。URL分类需要一个完美的结果,才能使其在现实世界的应用程序中可用。因此,我们提出了一种改进的URL分类方法,能够提供更好的结果。我们介绍了基于词的多n-gram模型,用于高效的特征提取和朴素贝叶斯分类器的多项分布,在随机搜索管道下进行超参数优化,找到URL特征的最佳参数。本研究的实验结果与前人的研究结果进行了比较,得到了比现有结果更好的结果。我们的实验结果提供了88.77%的召回率和87.63%的F1-Score,这是目前为止最好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Website Classification Using Word Based Multiple N -Gram Models and Random Search Oriented Feature Parameters
Website classification is a convenient starting point for building an intelligent web browser and social networking sites that can understand the favorite categories of a user and also detect adult or harmful websites perfectly. Classifying the web sites using the information of the Uniform Resource Locator (URL) is an important and fast technique. A perfect result is needed for URL classification to make it usable in the real world applications. So we have proposed an improved approach for URL classification that is able to provide a better result. We have introduced the word-based multiple n-gram models for efficient feature extraction and multinomial distribution for Naive Bayes classifier under the Random Search pipeline for hyperparameter optimization that finds the best parameters of the URL features. The experimental result of our research is compared with the result of previous research works and we have shown a better result than the existing result. Our experimental result provides 88.77% in recall and 87.63% in F1-Score which is the best performance so far.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Document Feeding Scanner: A Low Cost Approach A Proposed Algorithm and Architecture for Automated Meeting Scheduling and Document Management Website Classification Using Word Based Multiple N -Gram Models and Random Search Oriented Feature Parameters Towards Design and Implementation of a Low-Cost EMG Signal Recorder for Application in Prosthetic Arm Control for Developing Countries Like Bangladesh Power Efficient Distant Controlled Smart Irrigation System for AMAN and BORO Rice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1