{"title":"写或不写:基于随机存储器的神经形态计算的编程方案优化","authors":"Ziqi Meng, Yanan Sun, Weikang Qian","doi":"10.1145/3489517.3530558","DOIUrl":null,"url":null,"abstract":"One main fault-tolerant method for a neural network accelerator based on resistive random access memory crossbars is the programming-based method, which is also known as write-and-verify (W-V). In the basic W-V scheme, all devices in crossbars are programmed repeatedly until they are close enough to their targets, which costs huge overhead. To reduce the cost, we optimize the W-V scheme by proposing a probabilistic termination criterion on a single device and a systematic optimization method on multiple devices. Furthermore, we propose a joint algorithm that assists the novel W-V scheme by incremental retraining, which further reduces the W-V cost. Compared to the basic W-V scheme, our proposed method improves the accuracy by 0.23% for ResNet18 on CIFAR10 with only 9.7% W-V cost under variation with σ = 1.2.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Write or not: programming scheme optimization for RRAM-based neuromorphic computing\",\"authors\":\"Ziqi Meng, Yanan Sun, Weikang Qian\",\"doi\":\"10.1145/3489517.3530558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One main fault-tolerant method for a neural network accelerator based on resistive random access memory crossbars is the programming-based method, which is also known as write-and-verify (W-V). In the basic W-V scheme, all devices in crossbars are programmed repeatedly until they are close enough to their targets, which costs huge overhead. To reduce the cost, we optimize the W-V scheme by proposing a probabilistic termination criterion on a single device and a systematic optimization method on multiple devices. Furthermore, we propose a joint algorithm that assists the novel W-V scheme by incremental retraining, which further reduces the W-V cost. Compared to the basic W-V scheme, our proposed method improves the accuracy by 0.23% for ResNet18 on CIFAR10 with only 9.7% W-V cost under variation with σ = 1.2.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Write or not: programming scheme optimization for RRAM-based neuromorphic computing
One main fault-tolerant method for a neural network accelerator based on resistive random access memory crossbars is the programming-based method, which is also known as write-and-verify (W-V). In the basic W-V scheme, all devices in crossbars are programmed repeatedly until they are close enough to their targets, which costs huge overhead. To reduce the cost, we optimize the W-V scheme by proposing a probabilistic termination criterion on a single device and a systematic optimization method on multiple devices. Furthermore, we propose a joint algorithm that assists the novel W-V scheme by incremental retraining, which further reduces the W-V cost. Compared to the basic W-V scheme, our proposed method improves the accuracy by 0.23% for ResNet18 on CIFAR10 with only 9.7% W-V cost under variation with σ = 1.2.