频域非线性系统维纳核的快速估计

M. A. Shcherbakov
{"title":"频域非线性系统维纳核的快速估计","authors":"M. A. Shcherbakov","doi":"10.1109/HOST.1997.613499","DOIUrl":null,"url":null,"abstract":"A method for identification of discrete nonlinear systems in terms of the Volterra-Wiener series is presented. It is shown that use of a special composite-frequency input signal as an approximation to Gaussian noise provides the computational efficiency of this method especially for high order kernels. Orthogonal functionals and consistent estimates for Wiener kernels in the frequency domain are derived for this class of noise input. The basis of the proposed computational procedure for practical identification is the fast Fourier transform (FFT) algorithm which is used both for generation of actions and for analysis of system reactions.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast estimation of Wiener kernels of nonlinear systems in the frequency domain\",\"authors\":\"M. A. Shcherbakov\",\"doi\":\"10.1109/HOST.1997.613499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method for identification of discrete nonlinear systems in terms of the Volterra-Wiener series is presented. It is shown that use of a special composite-frequency input signal as an approximation to Gaussian noise provides the computational efficiency of this method especially for high order kernels. Orthogonal functionals and consistent estimates for Wiener kernels in the frequency domain are derived for this class of noise input. The basis of the proposed computational procedure for practical identification is the fast Fourier transform (FFT) algorithm which is used both for generation of actions and for analysis of system reactions.\",\"PeriodicalId\":305928,\"journal\":{\"name\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1997.613499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用Volterra-Wiener级数辨识离散非线性系统的方法。结果表明,使用一个特殊的复合频率输入信号作为高斯噪声的近似,提高了该方法的计算效率,特别是对于高阶核。针对这类噪声输入,导出了频域上维纳核的正交泛函和一致估计。所提出的用于实际识别的计算过程的基础是快速傅立叶变换(FFT)算法,该算法既用于生成动作,也用于分析系统反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast estimation of Wiener kernels of nonlinear systems in the frequency domain
A method for identification of discrete nonlinear systems in terms of the Volterra-Wiener series is presented. It is shown that use of a special composite-frequency input signal as an approximation to Gaussian noise provides the computational efficiency of this method especially for high order kernels. Orthogonal functionals and consistent estimates for Wiener kernels in the frequency domain are derived for this class of noise input. The basis of the proposed computational procedure for practical identification is the fast Fourier transform (FFT) algorithm which is used both for generation of actions and for analysis of system reactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narrow band source separation in wide band context applications to array signal processing Higher-order statistics for tissue characterization from ultrasound images An iterative mixed norm image restoration algorithm Comparison between asymmetric generalized Gaussian (AGG) and symmetric-/spl alpha/-stable (S/spl alpha/S) noise models for signal estimation in non Gaussian environments Linear algebraic approaches for (almost) periodic moving average system identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1