2016年BioNLP共享任务中植物种子发育监管网络(SeeDev)任务概述

Estelle Chaix, B. Dubreucq, Abdelhak Fatihi, Dialekti Valsamou, Robert Bossy, Mouhamadou Ba, Louise Deléger, Pierre Zweigenbaum, P. Bessières, L. Lepiniec, C. Nédellec
{"title":"2016年BioNLP共享任务中植物种子发育监管网络(SeeDev)任务概述","authors":"Estelle Chaix, B. Dubreucq, Abdelhak Fatihi, Dialekti Valsamou, Robert Bossy, Mouhamadou Ba, Louise Deléger, Pierre Zweigenbaum, P. Bessières, L. Lepiniec, C. Nédellec","doi":"10.18653/v1/W16-3001","DOIUrl":null,"url":null,"abstract":"This paper presents the SeeDev Task of the BioNLP Shared Task 2016. The purpose of the SeeDev Task is the extraction from scientific articles of the descriptions of genetic and molecular mechanisms involved in seed development of the model plant, Arabidopsis thaliana. The SeeDev task consists in the extraction of many different event types that involve a wide range of entity types so that they accurately reflect the complexity of the biological mechanisms. The corpus is composed of paragraphs selected from the full-texts of relevant scientific articles. In this paper, we describe the organization of the SeeDev task, the corpus characteristics, and the metrics used for the evaluation of participant systems. We analyze and discuss the final results of the seven participant systems to the test. The best F-score is 0.432, which is similar to the scores achieved in similar tasks on molecular biology.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Overview of the Regulatory Network of Plant Seed Development (SeeDev) Task at the BioNLP Shared Task 2016.\",\"authors\":\"Estelle Chaix, B. Dubreucq, Abdelhak Fatihi, Dialekti Valsamou, Robert Bossy, Mouhamadou Ba, Louise Deléger, Pierre Zweigenbaum, P. Bessières, L. Lepiniec, C. Nédellec\",\"doi\":\"10.18653/v1/W16-3001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the SeeDev Task of the BioNLP Shared Task 2016. The purpose of the SeeDev Task is the extraction from scientific articles of the descriptions of genetic and molecular mechanisms involved in seed development of the model plant, Arabidopsis thaliana. The SeeDev task consists in the extraction of many different event types that involve a wide range of entity types so that they accurately reflect the complexity of the biological mechanisms. The corpus is composed of paragraphs selected from the full-texts of relevant scientific articles. In this paper, we describe the organization of the SeeDev task, the corpus characteristics, and the metrics used for the evaluation of participant systems. We analyze and discuss the final results of the seven participant systems to the test. The best F-score is 0.432, which is similar to the scores achieved in similar tasks on molecular biology.\",\"PeriodicalId\":200974,\"journal\":{\"name\":\"Workshop on Biomedical Natural Language Processing\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Biomedical Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W16-3001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W16-3001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

本文介绍了BioNLP共享任务2016中的SeeDev任务。种子开发任务的目的是从科学文章中提取模式植物拟南芥种子发育的遗传和分子机制的描述。SeeDev任务包括提取许多不同的事件类型,这些事件类型涉及广泛的实体类型,以便它们准确地反映生物机制的复杂性。语料库由从相关科学文章的全文中选择的段落组成。在本文中,我们描述了SeeDev任务的组织、语料库特征以及用于评估参与系统的度量。对七个参与系统的最终测试结果进行了分析和讨论。最好的f值是0.432,这与分子生物学类似任务的得分相近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overview of the Regulatory Network of Plant Seed Development (SeeDev) Task at the BioNLP Shared Task 2016.
This paper presents the SeeDev Task of the BioNLP Shared Task 2016. The purpose of the SeeDev Task is the extraction from scientific articles of the descriptions of genetic and molecular mechanisms involved in seed development of the model plant, Arabidopsis thaliana. The SeeDev task consists in the extraction of many different event types that involve a wide range of entity types so that they accurately reflect the complexity of the biological mechanisms. The corpus is composed of paragraphs selected from the full-texts of relevant scientific articles. In this paper, we describe the organization of the SeeDev task, the corpus characteristics, and the metrics used for the evaluation of participant systems. We analyze and discuss the final results of the seven participant systems to the test. The best F-score is 0.432, which is similar to the scores achieved in similar tasks on molecular biology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BIOptimus: Pre-training an Optimal Biomedical Language Model with Curriculum Learning for Named Entity Recognition Multi-Source (Pre-)Training for Cross-Domain Measurement, Unit and Context Extraction Building a Corpus for Biomedical Relation Extraction of Species Mentions Good Data, Large Data, or No Data? Comparing Three Approaches in Developing Research Aspect Classifiers for Biomedical Papers Evaluation of ChatGPT on Biomedical Tasks: A Zero-Shot Comparison with Fine-Tuned Generative Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1